Observations for Cosmology and Structure Formation - Part 1

Ho Seong HWANG (KIAS)

2015 July 27 Pyeong-Chang Summer Institute 2015

With Galaxy Redshift Survey data

Two-point Correlation Function

Baryon Acoustic Oscillation

> Redshift-Space Distortion

Contents

≻ Goal:

Understand how to obtain scientific results from observational data (redshift survey)

≻ Part 1:

- Extragalactic Distance Indicators
- > Optical Spectroscopy
- Redshift Space Distortion

> Part 2:

- > Voids
- Photometric Redshifts (K-correction)
- Cosmology with High-z Objects
- Peculiar Velocity (Large-Scale Structure Near Local Group)
- **≻** Part 3:
 - Current/Future Redshift Surveys

History of the Universe

History of the Universe

Planck

What is Large-Scale Structure of the Universe?

- > Structure larger than Galaxy Clusters
- Over-density Structure
 Filament, Chain
 Well, December Show
 - > Wall, Pancake, Sheet
- > Under-density Structure
 > Tunnel
 > Void, Cell, Bubble

25 Mpc/h

Cosmological Simulation by Kim & Park

Why Large-Scale Structure of the Universe?

Large Structures : grew from small initial fluctuations after the inflation

Smaller structures form first, larger structures form later: we can study the formation of structure in action

Physical properties of large-scale structure depend on
 cosmological parameters
 physics of galaxy formation
 Constraints

Extragalactic Distance Indicators

Extragalactic distance scale (Cosmological Distance Ladder)

> Absolute Distance (known intrinsic properties)

Known Candles: luminosity

≻ Known Rulers: size

Relative Distance
 (Secondary Distance Indicators; objects with standardized properties)
 Standard Candles
 Standard Rulers

Extragalactic distance scale (Cosmological Distance Ladder)

> Absolute Distance (known intrinsic properties)

- ≻ Trigonometric Parallax
- > Statistical Parallax
- ➤ Moving Cluster Method

> Relative Distance (objects with standardized properties)

- > Main Sequence Fitting
- Cepheids: Leavitt's Law (Period-luminosity Relation)
- > RR Lyraes
- > Globular Cluster Luminosity Function (GCLF)
- > Planetary Nebula Luminosity Function (PNLF)
- **Tip of the Red Giant Branch**
- ≻ Novae
- ≻ Supernovae Type Ia
- Surface Brightness Fluctuations
- ≻ Redshift
- > Tully-Fisher Relation
- **D**_n σ Relation
- Brightest Cluster Galaxies Technique
- Sunyaev-Zel'dovich Effect
- Gravitational Lens Time Delays

Leavitt's Law (Period-luminosity Relation)

> m = a + b log(P) \rightarrow M = a + b log(P) where m-M = 5 log D - 5

>Absolute Calibration by

Hertzsprung (1913) with secular parallax, and later by Shapley (1918)

Cepheids (supergiant stars)
Bright & Simple: Just need to measure the period

Hubble's Andromeda

Shapley said to a person in his office: "Here is a letter that has destroyed my universe" (1924)

Expansion of the Universe

Supernovae

SN 1999dm in Galaxy Cluster Abell 2065

BOAO 1.8 m

20'

N

Department of Astronomy, Seoul National University - July 7, 1999

E

June 18, 1999

Near Tarantula Nebula in the LMC

Supernova 1987A • November 28, 2003 Hubble Space Telescope • ACS

NASA and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

Supernovae

Supernova 1987A • November 28, 2003 Hubble Space Telescope • ACS

Type 1a Standardized Candles

Accelerating Universe

High-Z Supernova Search Team
P.I.: B. Schmidt (Harvard)

Started late (94), but publish early (March 98→01) Supernova Cosmology Project
P.I.: S. Perlmutter (Berkeley)

➤ Started early (88), but publish late (Sept. 98→01)

2015: 100th Anniversary of General Relativity

Einstein's Field Equation (1915)

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}$$
Friedmann Equations (1922)

$$H^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{k}{a^{2}R_{0}^{2}}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$

$$H^{2} = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{k}{a^{2}R_{0}^{2}}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}$$
static ($\dot{a} = 0$) solutions

Extragalactic distance scale (Cosmological Distance Ladder)

What Distance?

What Distance? Connection to Observables Hogg 00; Peebles 93; Weinberg 08

≻ Redshift

$$rac{\lambda_0}{\lambda_e} = 1 + z = rac{a(t_0)}{a(t_e)}$$

> Comoving Distance (line of sight): From Robertson-Walker metric, $ds^{2} = dt^{2} - R^{2}[dr^{2} + S^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})]$ $r = \int_{t}^{t_{0}} \frac{dt}{R} = \frac{1}{R_{0}} \int_{0}^{z} \frac{dz}{H} \quad H = H_{0} [\Omega_{M} (1+z)^{3} + \Omega_{k} (1+z)^{2} + \Omega_{\Lambda}]$ $D_{\rm C} = D_{\rm H} \int_0^z \frac{dz'}{E(z')} \quad \stackrel{D_{\rm H} \equiv \frac{c}{H_0} = 3000 \, h^{-1} \, {\rm Mpc} = 9.26 \times 10^{25} \, h^{-1} \, {\rm m}}{E(z) \equiv \sqrt{\Omega_{\rm M} \, (1+z)^3 + \Omega_k \, (1+z)^2 + \Omega_\Lambda}}$

> Proper Distance: $D_C \times a(t) = D_C / (1+z)$

> Angular Diameter Distance:

$$d_{\rm A} \equiv \frac{D}{\delta\theta} = \frac{D_{\rm M}}{1+z} D_{\rm M} = \begin{cases} D_{\rm H} \frac{1}{\sqrt{\Omega_k}} \sinh\left[\sqrt{\Omega_k} D_{\rm C}/D_{\rm H}\right] & \text{for } \Omega_k > 0\\ D_{\rm C} & \text{for } \Omega_k = 0\\ D_{\rm H} \frac{1}{\sqrt{|\Omega_k|}} \sin\left[\sqrt{|\Omega_k|} D_{\rm C}/D_{\rm H}\right] & \text{for } \Omega_k < 0 \end{cases} \text{ where } D_{\rm M} \text{ is the transverse coming distance}$$

> Luminosity Distance

$$D_{\rm L} \equiv \sqrt{\frac{L}{4\pi S}} = (1+z) D_{\rm M} = (1+z)^2 D_{\rm A}$$

Lookback Time \rightarrow **Age of the Universe**

$$t_{\rm L} = t_{\rm H} \int_0^z \frac{dz'}{(1+z') E(z')} t_{\rm H} \equiv \frac{1}{H_0} = 9.78 \times 10^9 \, h^{-1} \, {\rm yr} = 3.09 \times 10^{17} \, h^{-1} \, {\rm s}$$

From Galaxy Spectra to Galaxy Distance

Some Quantities as a function of redshift

Optical Spectroscopy

Photometry vs. Spectroscopy

Structure of a Spectrograph

Structure of a Spectrograph - Grating Equation

Spectroscopy with Longslit

Spectroscopy with Multi Object Spectrograph

Spectrum on Chips

Spectra of Stars

Spectra of Star Clusters

Spectra of Galaxies and QSOs

QSO with Lyman α Forest

Andrew Pontzen

Multi Object Spectrograph

Multi Object Spectrograph

SDSS plates

Hectospec's optical fiber robotic positioner

Slit vs. Fiber

- ≻ Advantages
 - > High throughput
 - > Can choose slit width and length
 - > Good sky subtraction
 - > Can place slits close together
- > Disadvantages
 - > No flexibility at the telescope other than to change exposure times
 - > Setup time for such masks is non-negligible (~15-20 min)
 - > Wavelength coverage will vary from slitlet to slitlet

> CFHT/MOS, Gemini/GMOS

Slit vs. Fiber

> Advantages

- > Large fields
- > Uniform wavelength coverage
- > High Stability (needed for precision velocity)
- > Not suffer flexure as the telescope is moved
- > Additional "scrambling" of the light (exact placement of a target is needed for slitlets)

> Disadvantages

- > Light loss within the fiber
- > Fiber collision Minimal spacing between fibers
- Sky subtraction is never "local"
- > MMT/Hectospec, SDSS

Slit vs. Fiber

MOS	Mode	FOV	Grating	Resolution (R~λ/dλ)	Wavelength (Angstrom)	N per field
MMT(6.5m)/Hectospec	Fiber	D~1 deg	270 gpm 600 gpm	1000 2000	3650-9200 5300-7800	300
Magellan(6.5m)/ IMACS LDSS3 M2FS (PI inst.: Mateo)	Slit Prism Fiber	27'x27' 27'x27' D~30'	150-1200 300-1090 (Grism) LoRes	500-20000 800-1900 1500-2700	4300-9300 4300-9300 3700-10000	300 2500 256
Gemini(8m)/GMOS	Slit	5.5'x5.5'	R150 R831	150 4396	4500-10000 5500-10000	<50
Subaru(8m)/FMOS	Fiber	D~30'	600ZD- 1200G	600-2200	9000-18000	400
VLT(8m)/VIMOS	Slit	4x7'x8'	Grism	200-2500	3600-10000	40-200
Keck(10m)/DEIMOS	Slit	16.7'x5.0'	600ZD- 1200G	<6000	4100-11000	<130
GMT(25m)/GMACS (Manifest)	Slit	4'x8'		100-3000	4000-9000	100

Schiavon (11)

Nod: Telescope Motion on the Sky
 Shuffle: Charge shift up/down the detector

Glazebrook & Bland-Hawthorn 01

Extracted Spectra Comparison

Gemini Website

Practical Observation - 2) HST Slitless Spectroscopy

Practical Observation - 3) HETDEX IFU+MOS Survey

Redshift Space Distortion

Working on Redshift Space

Spherical Infall: Real vs. Redshift Space

Real Space vs. Redshift Space

Two-point Correlation Function (Peebles 80)

If n_bar is the average number density of galaxies, the probability of finding a galaxy in a volume element dV around x

 $P_1 = \overline{n} \, \mathrm{d} V$

The probability of finding a galaxy in a volume element dV at location x and at the same time

finding a galaxy in the volume element dV at location y

$$P_2 = (\overline{n} \,\mathrm{d}V)^2 \left[1 + \xi_\mathrm{g}(x, y)\right]$$

 $> \xi_g$ is the two-point correlation function of galaxies

Two-point Correlation Function

Tegmark+04

$$\xi_{\rm g}(r) = \left(\frac{r}{r_0}\right)^{-\gamma}$$

Power law with r₀: correlation length (5h⁻¹ Mpc) gamma = 1.5-1.8

> Application to Power Spectrum

$$P(k) = 2\pi \int_{0}^{\infty} \mathrm{d}r \; r^2 \, \frac{\sin kr}{kr} \, \xi(r)$$

THE ASTROPHYSICAL JOLINICAL, 633:560−574, 2005 November 10 © 2005. The American Astronomical Society: All rights reserved. Printed in U.S.A.

DETECTION OF THE BARYON ACOUSTIC PEAK IN THE LARGE-SCALE CORRELATION FUNCTION OF SDSS LUMINOUS RED GALAXIES

BAO

Two-point Correlation Function in 2D

Two-point Correlation Function in 2D

> Flattening: gravitational infall → depending on Ω_m (Kaiser 87) : $\beta \equiv \Omega_m^{0.6}/b$

>Using 2dFGRS (Peacock +01), $\beta = 0.43 \pm 0.07 \rightarrow \Omega_m \sim 0.3$ {b from the ratio of galaxy and mass(CMB) power spectra}

Contents

≻ Goal:

Understand how to obtain scientific results from observational data (redshift survey)

≻ Part 1:

- Extragalactic Distance Indicators
- > Optical Spectroscopy
- Redshift Space Distortion

> Part 2:

- > Voids
- Photometric Redshifts (K-correction)
- Cosmology with High-z Objects
- Peculiar Velocity (Large-Scale Structure Near Local Group)
- **≻** Part 3:
 - Current/Future Redshift Surveys