2018-01-15

Exoplanet Surveys with BOES

Myeong-Gu Park Kyungpook National University

7th Survey Science Group Workshop, 하이원

1. Exoplanet search in Korea

- Photometric methods
 - –Eclipsing binary
 - -Microlensing
 - -Transit method
- Spectroscopic methods
 - Radial velocity measurement
 - Periodic RV variation from orbital motion

2. Procedures to find exoplanet

• Raw spectrum

• 1D spectrum

- Stellar parameters
 - Line fitting
 - Temperature, surface gravity, rotation, metallicity

- RV measurement
 - $-I_2$ absorption cell for wavelength calibration
 - RV determination
 - RVI2CELL (Han et al. 2007)
 - Search for periodicity
 - Lomb-Scargle periodogram
 - Keplerian fitting

3. Pulsations

- Photometric variation
- Long Secondary Periods (LSP) in AGB stars
 - 400 ~ 1500 days
 - $-\Delta V \sim 5 \text{ km s}^{-1}$

4. Rotation

• Rotating stars with surface features

- Observable
 phenomena
 - Line profile variation
 - Bisector Velocity Span (BVS)
 - Bisector Velocity Curvature (BVC)
 - Correlation with RV
 - Periodogram

Caren Nelson

- Chromospheric activity indicator lines
 - Ca II H, H alpha
 - Line reversal
 - EW variation

5. BOES

- Bohyunsan Observatory Eschelle Spectrograph
- Completed in 2002
- 1.8 m
 - Bright stars only
- 3,500 Å ~ 10,500 Å
- Spectral resolution R = 32000, 45000, 90000
- Long-term rms scatter ~ 7 m s⁻¹

BOES configuration

한인우/이병철

CIM (Cassegrain Interface Module)

Spectrograph on stable optical table

- fiber input
- Slit Monitoring System for A&G
- Calibration Lamp System
- Long Slit Spectrograph

- Fiber output
- collimator
- Echelle grating & cross disperser
- camera & ccd

BOES

6. Exoplanet Surveys with BOES

- Members
 - Byeong-Cheol Lee, Inwoo Han, Kang-Min Kim, Gwanghui Jeong (KASI)
 - MGP, Tae-Yang Bang (KNU)
 - David E. Mkrtichian (Ukraine), Artie P. Hatzes (Germany)
 - Japanese & Chinese collaborators
- Exoplanets around F, G, K, M giants
 - Long period (100 ~ 1000 days) RV variations
- Search for Exoplanets around Northern circumpolar Stars (SENS)
 - No aliasing from seasonal variation

Exoplanets from BOES

ig	Program	duration	sample	planet	candi	Result (paper)
1	K giant	2003-2017	~50	10	2	8
2	F,M giant	2003-2017	~20		1	2
3	G giant (K-J)	2005-	188	2	~10	2
4	K dwarf	2008-2013	40	2	-	1
5	Binary		9	0	1	0
6	SENS I (K-C)	2010-2017	~220	7	~17	2
7	SENS II (K-C-J)	2017-2020	200	0	0	0
sum			700<	20<	30<	15

2017/10 이병철

Summary of the characteristics of exoplanets discovered by BOES (1/3)

		host star									planet								
	HD	sp.	mag	T_eff	[Fe/H]	log g	mass	radius	lumin	period	K (m)	e	mass	a (AU)	rms	disco	comment		
1	11755	G5	6.87	(K) 4312.5 ±5.0	-0.74 ±0.02	1.67 ±0.03	0.9 ±0.1	27.3 ±1.0	145.7 2	(days) 433.7 ±3.2	(III/S) 191.3 ±10.2	0.19 ±0.10	6.5 ±1.0	1.08 ±0.04	27.7	2015			
2	12529 α <u>Ari</u>	K2 III	2.01	4553 ±15	-0.09 ±0.03	2.33 ±0.06	1.5 ±0.2	13.9 ±0.3	-	380.8 ±0.3	41.1 ±0.8	0.25 ±0.03	1.8 ±0.2	1.2	17.8	2011	real planet?		
3	12648	G5	6.98	4835.8 ±7.5	-0.57 ±0.02	2.18 ±0.03	1.2± 0.1	9.2 ±0.6	45.01	133.6 ±0.5	102.0 ± 8.4	0.04± 0.16	2.9 ±0.4	0.54 ±0.02	29.8	2015			
4	19615	KO	6.57							402.1 ±3.8	300 ±30	0.4 ±0.2			75	<u>candi</u>	sens5		
5	20902 α Per	F5 Ib	1.82	6240 ±20	-0.28 ±0.06	0.58 ±0.04	7.3 ±0.3	60.7	5500	128.2 ±0.1	70.8 ±1.5	0.10 ±0.04	6.6 ±0.2	0.97	44.8	2012 candi	planet? pulsation ? rotation?		
6	21552 σ Per	K3 III	4.36	4201 ±22	-0.21 ±0.06	1.77 ±0.09	2.25 ±0.5	28	316.2	579.8 ±2.4	96.0 ±6.5	0.3 ±0.1	6.5 ±1.0	1.8 ±0.1	33.7	2014			
7	24064	KO	6.75	4052.5 ±22.5	-0.49 ±0.06	1.44 ±0.11	1.0 ±0.1	38.0 ±2.9	352.9 0	535.6 ±3.0	251.0 ±9.3	0.35 ±0.08	9.4 ±1.3	1.29 ±0.05	34.5	2015			
8	29139 Aldeba ran	K5III	0.85	4055 ±70	-0.27 ±0.05	1.2 ±0.1	1.13 ±0.11	45.1 ±0.1	-	628.96 ±0.90	142.1 ±7.2	0.10 ±0.05	6.47 ±0.53	6.47 ±0.53	-	2015	CFHT+D AO+McD +TLS +BOAO		
9	40956	KO	6.58	4869 ±28	0.14 ±0.05	3.02 ±0.09	2.00 ±0.08	8.56 ±0.33	46.17	578.6 3.3	68±2	0.24 ±0.05	2.7 ±0.6	1.4 ±0.1	~20	2017	BOAO +OAO		
10	44385	K0 III	6.77	4440 ±28	0.10 ±0.07	2.00 ±0.12	2.0 ±0.3	20.3 ±4.9	233.2	473.9 ±5.2	106 ±11	0.20 ±0.21	6.3 ±1.2	1.5 ±0.1	42.8	candi	sens4		
11	52030	M1 III	6.49	3970 ±30	$^{-0.54}_{\pm 0.08}$	1.3± 0.1	1.09± 0.16	53.0 ±6.1	867	484.3± 4.2	329.0 ±21.8	0.14 ±0.14	13.3 ±2.3	1.2 ±0.1	82.1	2017	largest, AGB stage		
12	66141	K2 III	4.39	4323 ±15	-0.323 ±0.03 4	1.92 ±0.07	1.1 ±0.1	21.4 ±0.6	174	480.5 ±0.5	146.2 ±2.7	0.07 ±0.03	6.0 ±0.3	1.2 ±0.1	38.8	2012			

Summary of the characteristics of exoplanets discovered by BOES (2/3)

		host star									planet								
H	ЧD	sp.	mag	T_eff	[Fo/H]	log g	mass	radius	period	K		maga	a	rms	disco	commont			
	пр	type	mag	(K)	[ге/п]	IOg g	(Sun)	(Sun)	Tullin	(days)	(m/s)	e	mass	(AU)	(m/s)	very	comment		
13	69267 β <u>Cnc</u>	K4 III	3.52	4092.1 ±17.5	-0.29 ±0.06	1.4 ±0.1	1.7± 0.1	47.2 ±1.3	785.7	605.2 ±4.0	133.0 ±8.8	0.08 ±0.02	7.8 ±0.8	1.7 ±0.1	47.2	2014			
14	85503 μ Leo	K2 III	3.88	$^{4538.2}_{\pm 27.5}$	0.36± 0.05	2.4± 0.1	1.5 ±0.1	11.4± 0.2	62.62	357.8 ±1.2	52.0 ± 5.4	0.09 ±0.06	2.4 ±0.4	1.1 ±0.1	14.2	2014			
15	89484 γ1 Leo	K0 III	2.01	4330 ± 15	-0.51 ±0.05	1.59	1.23 ±0.21	31.88 ±1.61	-	428.5 ±1.25	208.3 ±4.3	0.144 ±0.04 6	8.78 ±1.0	1.19 ±0.02	43	2010			
16	97619	K0 III	7.04	4355 ±20	-0.07 ±0.07	2.33 ±0.09	1.2 ±0.1	15.9 ±1.4	122.8	667.7 ±26.7	71±13	0.28 ±0.30	3.3 ±1.4	1.6 ±0.1	26.8	candi	sens4		
17	100655	G9 III	6.45	4861 ±110	0.15 ⁻ ±0.12	2.89 ±0.10	2.4 ±0.3	2.4 ±0.3		157.57 ±0.65	35.2 ±2.3	0.085 ±0.05 4	1.7 ±+0.1	0.76 ±+0.3	11.2	2012	BOAO +OAO		
18	106574	K2 III	5.88	4501 ±33	-0.43 ±0.04	2.18 ±0.18	3.7 ±0.5	50.0 ±7.0	152.2	1071.1 ±15.1	149±8	0.03 ±0.11	17.9 ±1.0	3.2 ±0.1	41.2	candi	sens4		
19	111591	KO III	6.59	4884 ±30	0.07 ±0.04	3.10 ±0.10	1.94 ±0.07	8.03 ±0.49	38.07	1056.4 ±14.3	59±3	0.26 ±0.10	4.4 ±0.4	2.5 ±0.1	~15	2017	BOAO +OAO		
20	113996	K5 III	4.92	4181 40	0.13 0.08	1.86 0.16	1.49 0.18	25.11 1.20	291.0 0	610.2 ±3.8	120±9	0.28 ±0.12	6.3 ±1.0	1.6 ±0.1	39.3	2017			
21	118904	K2 III	5.67	4469 ±23	-0.11 ±0.09	±2.13 0.10	1.6 ±0.2	17.2 ±0.7	152.4	675.8 ±22.9	61±9	0.31 ±0.33	3.3 ±1.4	1.8 ±0.1	34.5	candi	sens4		
22	131873 β UMi	K4 IIIvar	2.08	4126.0 ±25.0	-0.27 ±0.07	1.5 ±0.1	1.4 ±0.2	38.3 ±1.1	537.0 7	522.3 ± 2.7	126.1 ±8.1	0.19 ±0.02	6.1 ±1.0	1.4 ±0.1	40.5	2014			
23	133086 8 UMi	KO	6.83	4847.4 ±7.5	-0.03 ±0.02	2.57 ±0.03	1.8 ±0.1	9.9 ±0.4	55.94	93.4 ±4.5	46.1 ±4.0	0.06 ±0.18	1.5 ±0.2	0.49 ±0.03	17.2	2015			
24	142795	K2	6.85							781 ±6	192 ±16	0.26 ±0.15			44	candi	sens5		
25	143107 € <u>CrB</u>	K2 III	4.14	4406 ±15	-0.094 ±0.00 1	1.94 ±0.08	1.7 ±0.1	21	151	417.9 ±0.5	129.4 ±2.0	0.11 ±0.03	6.7 ±0.3	1.3	25.0	2012			
26	150010	K2 III	6.27							524.6 ±6.9	59 ±6	0.2 ±0.2			27	candi	sens5		
27	158996	K5 III	5.8	4069 30	-0.2 ±0.1	1.4 ±0.1	1.8 ±0.3	50.3 ±4.3	1034. 7	820.2 ±14.0	207 ±14	0.13 ±0.05	0.13 ±0.05	2.1 ±0.2	57.8	2017	brightest		
28	164058 γ Dra	K 5 III	2.24														no planet by Artie		

Summary of the characteristics of exoplanets discovered by BOES (3/3)

		host star									planet								
	HD	sp.	mag	ag T_eff	[Fe/H]	logg	mass	radius	lumin	period	K	e	mass	a	rms	disco	comment		
		type	0	(K)	1		(Sun)	(Sun)		(days)	(m/s)			(AU)	(m/s)	very			
29	164428	K5 III	6.39	4119 ±40	-0.07 ±0.10	1.62 ±0.17	1.5 ±0.2	33.9 ±2.9	122.8	594.6 ±9.7	108 ±14	0.23 ±0.24	5.6 ±1.1	1.6 ±0.1	51.8	candi	sens4		
30	174205	К2	6.28							612 ±13	66 ±9	0.2 ±0.3			38	candi	sens5		
31	183030	M1 III	6.31							459 ±22	338 ±48	0.4 ±0.2			107	candi	sens5		
32	186063	KO	6.97							301 ±3	116 ±32	0.4 ±0.4			46	candi	sens5		
33	202432	K2 III	7.05	4549 ±30	0.16 ±0.10	2.42 ±0.12	1.2 ±0.2	11.0 ±0.4	63.9	422.4 ±5.0	46 ± 4	0.21 ±0.19	1.9 ±0.4	1.2 ±0.1	13.9	candi	sens4		
34	204149	G5	6.9							±35 0.1	71 ±10	0.1 ±0.1			35	candi	sens5		
35	208527	M1 III	6.4	4035 ±65	-0.09 ±0.16	1.6 ±0.3	1.6 ±0.4	51.1 ±8.3	-	875.5 ±5.8	155.4 ±3.2	0.08 ±0.04	9.9 ±1.7	2.1 ±0.2	39.3	2013	First planet around M-giant		
36	208742	MO.5 III	6.51	3940 ±50	-0.47 ±0.20	1.1 ±0.3	1.18 ±0.22	57.2 ±7.1	980	602.8 ±4.9	303.0 ±16.6	0.06 ±0.13	14.0 ±2.0	1.5 ±0.2	55.4	2017	largest, <u>AGB</u> stage		
37	220074	M2 III	6.4	3935 ±110	-0.25 ±0.25	1.3 ±0.5	1.2 ±0.3	49.7 ±9.5	-	672.1 ±3.7	230.8 ±5.0	0.14 ±0.05	11.1 ±1.8	1.6 ±0.1	57.4	2013	First planet around M-giant		

7. Exoplanets around Evolved Giant Stars

- Do evolved giant stars have different probability to host exoplanets?
- Do evolved giant stars with exoplanets have different metallicity?
 - Absorption of exoplanets by the host star?

