The TRGB and the Hubble Constant

Myung Gyoon Lee with In Sung Jang (AIP)

Department of Physics & Astronomy Seoul National University (SNU), Korea

The 7th Survey Science Workshop, Jan 15–17, 2018, High-1 Resort, Korea

Today's Expansion rate of the Universe

Two Ways to Estimate H₀

- $H(t=t_0)$
 - cosmic distance ladder

H(z)->H(t₀)
 inverse distance ladder (CMBR, BAO)

Cosmic Distance ladder for H₀

- SN la Cosmology->H(t₀)
- Calibration of SN Ia:
 Cepheids based on geometric anchors

The status of H₀ in 2016

 Cepheids have been used to calibrate SN Ia.

 Cepheid-calibrated SN Ia & CMB are diverging in H₀ estimates!

Recent Evolution of H₀ (–2016)

The Hubble Tension in 2016?

Four possibilities: xo, ox, xx, oo?

How to check the problem?

By independent calibration of SN Ia using the TRGB!

Cosmic Distance ladder for H₀

- SN la Cosmology->H(t₀)
- Calibration of SN Ia:
 Cepheids based on geometric anchors
 TRGB based on geometric anchors

A Brief History of the TRGB

In 1944, Baade started!

-The resolution of M32, NGC 205 & the central region of M31. -Resolved stars are similar to those of globular clusters (Pop II). -Mpg (TRGB) = -1.1 mag

FIG. 1.—Shaded areas: ordinary H-R diagram (type I). Hatched area: H-R diagram of stars in globular clusters (type II).

In 1990s, Modern era of the TRGB began!

The TRGB has become popular as a precise distance indicator, due to following factors.

(1) Edge detection and the TRGB precision

Lee, Freedman, & Madore (1993) "The TRGB as a Distance Indicator for Resolved Galaxies" -an edge detector (Sobel filters) for the TRGB measurement, -the precision of the TRGB is comparable to that of Cepheids. $-M_I(TRGB) = -4.0\pm0.1$

(2) Advent of HST (1990–)

Today, the TRGB is a powerful tool for SN cosmology to determine the Hubble Constant! (Beaton+2016, Jang & Lee2017a,b and references therein).

Strengths of the TRGB

SN Ia are found in all types of galaxies. Galaxies have stars with a large range of ages, including many old stars!

- (1) The TRGB can be used for any types of resolved galaxies.
- (2) Suffers little extinction problem.
- (3) **for d<35 Mpc** with HST (2017).

TRGB Calibration of SN

TIPSNU:

The Tip of the RGB for SN host galaxies in the Universe at Seoul National University!

How to reduce the errors?

(1) Improving the accuracy and the precision of the TRGB.

(2) Increasing the sample of SN Ia for calibration.

New TRGB Calibration (2017)

TIPSNU IV. (Jang & Lee 2017a, ApJ, 835, 28)

- (1) Higher Precision
 - -deriving TRGBs for a large range of color
 - -introducing QT magnitude, which is a color
 - independent magnitude of the TRGB.
 - -using the Sobel filter for edge detection.
 - -typical measuring error of the TRGB: ~0.02mag

New TRGB Calibration: TRGB-Color

-Targets: nearby galaxies of various types (E, Irr, S) with deep HST images

CMDs and Edge maps of Galaxies

New TRGB -Color Relation

TIPSNU IV. (Jang & Lee 2017a)

- -Derived QT magnitude, which is a colorindependent magnitude of the TRGB:
- $QT = I_0 0.091((V-I)_0 1.5)^2 + 0.007((V-I)_0 1.5)$

using blue RGBs typical measuring error of TRGB: ~0.02mag

New TRGB Calibration: zero point

- TIPSNU IV. (Jang & Lee 2017a, ApJ)
- (2) Higher Accuracy
 - -Previous calibrations are based on HBs in MW
- GCs or Local Group galaxies.
 - -In contrast, TIPSNU uses two distance anchors
 - with geometric distance estimates.
 - -systematic error of the TRGB distance: ~2.7%

Zero-point calibration of the TRGB Two distance anchors with accurate geometric distances NGC 4258 (M106, based on H₂O Megamasers) 2) The LMC (based on 8 eclipsing binaries)

Error budget for zero point error

Comparison of TRGB Calibrations

-Excellent agreement with Lee+(1993) for low metallicity! -Note that they based on totally independent calibrations!

TIPSNU for H₀ in 2017

-TIPSNU.V. (Jang & Lee2017b, ApJ, 836,74)

TRGB Calibration of SN Ia

TIPSNU

(The Tip of the RGB for SN host galaxies in the Universe)

Criteria for targets -Galaxies at <40 Mpc hosting SN Ia with HST images -with modern photometry of SN Ia -with low extinction In 2017: N(SN Ia)=8

Current Progress:

I: M101(Lee & Jang 2012, ApJL, 760, L14)II: M66 and M96(Lee & Jang 2013, ApJ, 773, 13)III: NGC 4038/39, NGC 5584(Jang & Lee 2015, ApJ, 807, 133)IV: New TRGB calibration(Jang & Lee 2017a, ApJ, 835, 28)V: NGC 3021 and others(Jang & Lee 2017b, ApJ, 836, 74)

Three distant galaxies at ~30Mpc!

- Impossible to get TRGB distances?
- The most challenging sample for TRGB!

NGC 3370 : SN 1994ae

NGC 3021 : SN 1995al

F555W: 57,600s F814W: 24,000s

 $(m-M)_{0,Cep} = 32.13_{\pm 0.07}$ (Riess+11) $\rightarrow d\sim 27$ Mpc

 $(m-M)_{0,Cep} = 32.27_{\pm 0.08}$ (Riess+11) $\rightarrow d\sim 28$ Mpc

NGC 1309 : SN 2002fk (The Champion in TRGB)

 $(m-M)_{0,Cep} = 32.59_{\pm 0.09}$ (Riess+11) $\rightarrow d\sim 33$ Mpc

F555W: 57,600s F814W: 24,000s

CMDs showing RGB stars!

Calibration of SN Ia with TRGB (TIPSNU) -N (low reddened SN Ia) = 6 $-M_v$ (SN Ia) = -19.15 ±0.06 (ran)±0.06(sys)

Cepheid-SN la calibration in 2016

Riess et al. (2016) Mega-SH0ES

'A 2.4% determination of the local value of H₀'
✓ Cepheid distance estimate: for 19 SN Ia
✓ SN Ia in nearby universe (z<0.1) : 233 SNe Ia
✓ H₀ = 73.24 ± 1.74 km/s/Mpc (2.4% error)

Riess et al. (2009, 2011) SH0ES

Cepheid (MW,LMC) and Maser distance estimate : for 8 SN Ia

SN la in nearby universe (z<0.1) : 140 SNe la

 $H_0 = 73.8 \pm 2.4 \text{ km/s/Mpc}$ (4.1% error)

TRGB Calibration of SNe Ia and H₀

For the 6 low-reddened SN Ia, We use m_{B,corr}(Riess+16)+ TRGB distances (Jang&Lee17).

Weighted Mean of 6 SNe :

 $M_{B,corr} = -19.30 \pm 0.07$ $(\pm 0.051_r \pm 0.046_s \text{ mag})$

 $H_0 = 71.2 \pm 2.5 (3.5\%)$ (±1.66_r ±1.87_s km/s/Mpc)

Our best estimate!

TIPSNU H₀ in 2017

TIPSNU value (Jang & Lee2017b) based on M106 and LMC anchors

 $H_0 = 71.17 \pm 2.50 \text{ km/s/Mpc}$ (3.5% error)

is in excellent agreement with (Riess+2016)'s value based on M106 and LMC, $H_0 = 71.61 \pm 1.78 \text{ km/s/Mpc}$,

but, is 1.07 km/s/Mpc smaller than

(Riess+2016)'s value based on four anchors (including M31, MW), $H_0 = 73.24 \pm 1.74 \text{ km/s/Mpc}$ (2.4% error).

Mystery for NGC 4038/39

Why such a large difference in Cepheid distances?

NGC 4038/39 : SN 2007sr (Antennae galaxies)

Mystery for NGC 4038/39!

Cepheid distances

Riess+(2011) used the entire Cepheid sample: $(m-M)_0=31.66\pm0.08$ Riess+(2016) excluded 10 ULP Cepheids (P>80d): $(m-M)_0=31.290\pm0.112$

TRGB distance (JL2017) (m-M)₀=31.677±0.037 is consistent with Riess+(2011) value, but not with Riess+(2016)!

A problem for Cepheid distances: Should we include or exclude ULP for Cepheid distance estimates? –Need to be studied in the future!

The Hubble Tension in 2016?

H₀ from SN Ia(TRGB) in 2017!

- > SN Ia(Cepheid based on 4 anchors) PLANCK : 3σ
- SN Ia(TRGB, Cep based on 2 anchors) -PLANCK : 2σ

H₀ from SN Ia(TRGB) in 2017!

- > SN Ia(Cepheid based on 4 anchors) PLANCK : 3σ
- SN Ia(TRGB, Cep based on 2 anchors) -PLANCK : 2σ

Cosmological Implications

✓ Our SN Ia(TRGB) estimate of H_0 : $H_0 = 71.2 \pm 2.5 \text{ km/s/Mpc}$

→ It agrees well with SN Ia (Cepheid based on the same anchors), supporting $2-3\sigma$ tension!

SN Ia (Cepheid based on MW and M31) leads to a higher H0 value! Why?

✓ We need to improve the zero point accuracy of the TRGB and Cepheids, to determine a more accurate value of H_0 in the future.

✓ Any need for new physics?

Future of TRGB Calibration of SN Ia

(1) CCHP (Carnegie-Chicago H₀ Project)

-Calibration of SN Ia using Pop II candles with HST Cycle 22 (PI: Freedman)
-12 galaxies at <30 Mpc hosting SN Ia

(2) Extension to NIR: JWST

Summary

-The TRGB is a secondary distance indicator based on geometric anchors, being an excellent tool for H_0 !

-2017 H_0 (TRGB-SN Ia) = 71.17 ±2.50 (3.5% error), showing 2 σ Hubble tension.

-H₀ in 2018 is still evolving! -The future of the H₀ tension?

-Stay tuned!