Filaments, the Universal Nursery of Stars

Introduction on FUNS Survey and Physical Properties of L1478

Eun Jung Chung (KASI)
FUNS Team - C. W. Lee (PI), E. J. Chung, S. Kim (KASI), P. C. Myers (CfA), P. Caselli (MPI), M. Tafalla (OAN), G. Kim, M. Kim, A. Soam (KASI), M. Gophinathan (IIA),
T. Liu (KASI), K. Kim (KNUE), W. Kwon, and J. Kim (KASI)

CONTENTS

- Introduction on FUNS Survey
- Observation Progress
- Physical Properties of L1478
- Summary

Classical Star Formation Model

Recent IR and Radio Observations

Filamentary and turbulent molecular clouds Ubiquity of filamentary structure
: preceding feature to any star formation activity in the clouds

From Filaments to Dense Cores

Column density map of Aquila from SPIRE/PACS data. The candidate Class 0 protostars and bound prestellar cores are shown as green stars and blue triangles, respectively. (e.g., Andre et al. 2010).

The centroid velocity measured for $\mathrm{N} 2 \mathrm{H}+$ across
Serpens South showing Gas flow along the filament. The circles denote the YSOs. (Kirk. et al. 2013)

Questions

- How do the filaments, cores and stars form? In other words, do they form more by colliding flows or by self-gravity?
- Do their cores form at the same time as the filaments, or later by gravitational fragmentation?
- Do their cores gain mass more by axial flows along filaments, or by radial accretion onto the filaments?

Filaments studies

- are found from Legacy Survey of nearby Gould Belt's clouds Spitzer and Herschel Space Telescopes
- revolutionized the study of star formation process in molecular clouds
- most of the data are continuum emission and thus all physical properties on the filamentary structures are the integration of several different components to the line of sight, actually suffering from a lack of velocity information

We designed and proposed
TRAO Multi-beam Legacy Survey of Nearby Filamentary Molecular Clouds.

Filaments, the Universal Nursery of Stars

FUNS Survey

- Goals
- Velocity distribution of low dense filaments and their dense cores
- Inward motions toward dense cores from their surrounding filaments
- Chemical differentiation of filaments and their dense cores
- Observing Strategy

Setup	Line	$\mathrm{RMS}[\mathrm{K}]$	$\Delta \mathrm{V}[\mathrm{km} / \mathrm{sec}]$
Filament kinematics	${ }^{13} \mathrm{CO} \& \mathrm{C}^{18} \mathrm{O}(1-0)$	0.12	$0.1 \sim 0.2$
Core infall	$\mathrm{N}_{2} \mathrm{H}^{+} \& \mathrm{HCO}^{+}(1-0)$	0.07	0.06
Chemical evolution	$\mathrm{SO}(32-21) \& \mathrm{NH}_{2} \mathrm{D}(1-0)$	0.05	0.1

FUNS Target

	R.A.	Dec.	distance	SF property *	$\sigma_{\mathrm{NT}} / \sigma_{\mathrm{T}}{ }^{* *}$	Classification ***
Polaris	015500	+874100	150 pc	Quiescent ${ }^{\text {A11 }}$	$0.98{ }^{1}$	1
IC 5146	024800	+473000	460 pc	quiescent LSF+active high mass SF ${ }^{\text {F09 }}$	$0.75{ }^{1}$	3+5
Perseus	033700	+311500	235 pc	Low and intermediate mass ${ }^{\text {B08 }}$	$2.80{ }^{2}$	3
Auriga	042000	+380500	450 рс	Relatively modest SF in GB, star-cluster-forming ${ }^{\text {H13 }}$		4
Taurus	043200	+261000	140 pc	Low-mass SF ${ }^{\text {M13 }}$	$1.05{ }^{2}$	2,3
Orion B	054000	-020000	415 pc	Active, High mass ${ }^{\text {N98 }}$	$2.95{ }^{3}$	5
Scorpius	165100	-25 2000	145 pc	Active, High mass ${ }^{\text {B00 }}$	2.01^{9}	5
Serpens	182300	-031000	230 pc	Active, Low mass SF cloud ${ }^{\text {B13 }}$	$4.13{ }^{8}$	3
Aquila	183200	-020000	260 pc	Active ${ }^{\text {A11 }}$	$0.46{ }^{1}$	4
Cepheus	212000	+723000	~300 pc	L1251A - Low to intermediate mass SF 08	$1.12{ }^{9}$	2,3

* star formation property (References: ${ }^{\text {A11 Arzoumanian }+2011, ~}{ }^{\mathrm{B0O}}$ Bhatt2000, ${ }^{\mathrm{B08}}$ Bally $+2008,{ }^{\mathrm{B11}}$ Belloche $+2011,{ }^{\mathrm{B13}}$ Burleigh +2013 , ${ }^{\mathrm{D} 12}$ Duarte-Cabral+2012, ${ }^{\text {F09 France }+2009, ~}{ }^{615}$ Glenn+2015, ${ }^{\mathrm{H} 13}$ Harvey+2013, ${ }^{\mathrm{K} 08}$ Kun+2008, ${ }^{\text {L08 }}$ Luhman+M2008, M02 Moreira+Y2002, ${ }^{\text {M13 }}$ Meng+2013, ${ }^{\text {N89 }}$ Nyman+1989, ${ }^{\text {N98 }}$ Nagahama+1998, ${ }^{\text {P11 }}$ Peterson+2011, ${ }^{508}$ Spezzi+2008, ${ }^{\text {T96 }}$ Tachihara+1996)
** ratio of non-thermal velocity dispersion to thermal velocity dispersion (using $\mathrm{C}^{18} \mathrm{O}(1-0)$ linewidth and assuming 10 K)
References: ${ }^{1}$ Arzoumanian+2013, ${ }^{2}$ Meng+2013, ${ }^{3}$ Shimajiri $+2014,{ }^{4}$ Vilas-Boas+1994, ${ }^{5}$ Hara+1999, ${ }^{6}$ Glenn+2015, ${ }^{7}$ Onishi+1999, ${ }^{8}$
Graves+2010, ${ }^{9}$ Vilas-Boas+2000
*** groups classified with their SF characteristics
1 : quiescent NSF, 2 : quiescent LSF, 3 : turbulent LSF, 4 : Star-cluster-forming, 5 : high-mass SF

Observation

TRAO 14m with SEQUOIA Jan. 2016 -

- 4x4 array receiver (SEQUOIA-TRAO) with $\Delta \theta^{\sim} 47 "$ @ 110 GHz
- 2 lines simultaneous obs. (85-100 or $100-115 \mathrm{GHz}$)
- 4096x2 channels with $\Delta \mathrm{v} \sim 0.05 \mathrm{~km} / \mathrm{s}$ @ 110GHz

Observed Regions (on Heschel Psw imase)

California MC

Serpens MC

West Perseus MC

Observation Progress

7 targets
57 tiles
676 maps
$7.1 \mathrm{deg}^{2}$

- L1251 (Cepheus)
- Serpens
-

0.19 K
0.18 K

$0.57 \mathrm{deg}^{2}$
0.21 K

0.12 K

0.12 K

0.06 K

0.08 K

- Orion B

- PolarisSouth

- California-L1478

$0.97 \operatorname{deg}^{2}$

0.11 K

0.10 K

0.07 K

0.07 K
- Perseus West

0.11 K

Filaments and Dense Cores of L1478 in CMC

CaliforniaMC

- Distance ~ 450 ± 23 pc (Lada+2009)
- Mass ~ $10^{5} \mathrm{M}_{\odot}$ (Lada+2009)
- Modest star forming region (Harvey+2013)

$\mathrm{C}^{18} \mathrm{O}$ and ${ }^{13} \mathrm{CO}$ data cubes

- 1.1 square degree area
- rms level $\sim 0.1 \mathrm{~K}$ $\left(\mathrm{w} / \Delta \theta_{\text {cell }} \sim 44 "\right.$ and $\left.\Delta \mathrm{V} \sim 0.1 \mathrm{~km} \mathrm{~s}^{-1}\right)$

The maps are integrated over a velocity range of -3.2 to $0.6 \mathrm{~km} \mathrm{~s}^{-1}$ for $\mathrm{C}^{18} \mathrm{O}$, and -3.8 to $2.3 \mathrm{~km} \mathrm{~s}^{-1}$ for ${ }^{13} \mathrm{CO}$. The contour levels of ${ }^{13} \mathrm{CO}$ are 5,9 , 13,17 , and $21 \sigma_{\text {rms }}$.

Filaments Identification with $\mathrm{C}^{18} \mathrm{O}$ Data Cube

Skeletons: Find skeleton with FilFinder

(MST method - with inscribed circle and decide its skeleton)

$\mathrm{V}_{\mathrm{Isr}}$ and Line Widths of $\mathrm{C}^{18} \mathrm{O}$

Gaussian fitting for $\mathrm{C}^{18} \mathrm{O}$ spectra (> $3 \boldsymbol{\sigma}_{\mathrm{rms}}$) with PYTHON code based on the Dendrogram results

H_{2} Column Density from $\mathrm{C}^{18} \mathrm{O}(1-0)$

following Pattle+2015

Column density N (Garden+1991) :

$$
N=\frac{3 k_{\mathrm{B}}}{8 \pi^{3} B \mu_{D}^{2}} \frac{\mathrm{e}^{h B J(J+1) / k_{\mathrm{B}} T_{\mathrm{ex}}}}{J+1} \frac{T_{\mathrm{ex}}+\frac{h B}{3 k_{\mathrm{B}}}}{1-\mathrm{e}^{-h v / k_{\mathrm{B}} T_{\mathrm{ex}}}} \int \tau \mathrm{~d} v
$$

B : rotational constant
μ : permanent dipole moment of the molecule
J : lower rotational level
$T_{\text {ex }}$: excitation temperature (Pineda+2008)

$$
T_{\mathrm{ex}}=\frac{T_{0}}{\left.\ln \left(1+T_{0}\left(\frac{T_{\mathrm{R}}}{1-\mathrm{c}}\right)+\frac{T_{0}}{e^{T_{0} / T_{\mathrm{bg}}-1}}\right)^{-1}\right)}
$$

$T_{0}=h v / k_{B}$
$T_{\mathrm{bg}}: \mathrm{CMB}$ temperature (2.73 K)
T_{R} : vadiation temperature $-T_{\mathrm{R}}$ of ${ }^{13} \mathrm{CO}$
$\int \tau(v) \mathrm{d} v=\frac{1}{J\left(T_{\mathrm{ex}}\right)-J\left(T_{\mathrm{bg}}\right)} \int \frac{\tau(v)}{1-\mathrm{e}^{-\tau(v)}} T_{\mathrm{MB}} \mathrm{d} v$

$$
\approx \frac{1}{J\left(T_{\mathrm{ex}}\right)-J\left(T_{\mathrm{bg}}\right)} \frac{\tau\left(v_{0}\right)}{1-\mathrm{e}^{-\tau\left(v_{0}\right)}} \int T_{\mathrm{MB}} \mathrm{~d} v
$$

$J(T)=\frac{T_{0}}{\mathrm{e}^{T_{0} / T}-1}$
$\frac{T_{\max , \mathrm{C}^{18} \mathrm{O}}}{T_{\max ,{ }^{13} \mathrm{CO}}}=\frac{1-\mathrm{e}^{-\tau_{\mathrm{Cl} 18 \mathrm{O}}}}{1-\mathrm{e}^{-\tau_{13} \mathrm{CO}}} \quad$ with $\tau_{13 \mathrm{CO}}=5.5 \tau_{\mathrm{C} 18 \mathrm{O}}$
Conversion factor of $X\left(\mathrm{C}^{18} \mathrm{O}\right)=2.635 \times 10^{-7}$
(Pineda+2010, Frerking+1982, Wilson 1999)

(a) Locations of ten identied filaments (ridges) on top of the integrated intensity map of $\mathrm{C}^{18} \mathrm{O}$ (contours are $3,6,9$ and $12 \times \sigma$ in $\mathrm{K} \mathrm{km} \mathrm{s}^{-1}$. (b) - (d) H_{2} column density, velocity field, and linewidths maps of each filament. $\mathrm{V}_{\text {LSR }}$ and $\Delta \mathrm{V}$ (linewidth) are derived quantities by gaussian fitting method. Small offset is given to the original position of each filament to avoid spatial overlaps of filaments.

Physical Properties of Filaments

Table 2. Physical Properties of Filaments

Fil. ID	$V_{\text {lsr }}$ range $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	L (pc)	\bar{W} (pc)	M $\left(M_{\odot}\right)$	$\bar{M}_{\text {lin }}$ $\left(M_{\odot} \mathrm{pc}^{-1}\right)$	$\Delta V_{\text {lsr }}$ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$\left\|\nabla \bar{V}_{\text {lsr }}\right\|$ $\left(\mathrm{km} \mathrm{s}^{-1} \mathrm{pc}^{-1}\right)$	YSOs ${ }^{\text {a }}$
1	-1.7 to -1.2	0.45	0.10	$6.9 \pm$	15.3	0.5	1.12	
2	-1.9 to -0.8	0.51	0.12	$17.8 \pm$	30.8	1.1	1.90	
3	-1.6 to -0.8	0.35	0.07	$9.4 \pm$	30.7	0.8	2.61	
4	-2.3 to -1.3	1.40	0.08	$216.1 \pm$	149.0	1.0	0.69	2
5	-2.2 to -0.6	1.12	0.19	$85.6 \pm$	68.7	1.6	1.28	
6	-1.0 to -0.2	0.83	0.10	$25.7 \pm$	28.6	0.8	0.89	
7	0.0 to 0.3	0.35	0.13	$12.3 \pm$	25.9	0.3	0.63	
8	-2.1 to -0.1	0.87		$127.8 \pm$	144.5	2.0	2.26	2
9	-2.1 to -1.0	0.66	0.14	$20.0 \pm$	28.5	1.1	1.57	
10	-1.3 to -0.6	0.70	0.08	$19.3 \pm$	23.5	0.7	0.85	

[^0]
Identification of Dense Cores

- $\mathrm{N} 2 \mathrm{H}+(1-0)$ moment 0 maps
- FellWalker algorithm

Physical Properties of Cores

Core ID	Position		Size		$\begin{gathered} \text { PA } \\ \text { (deg.) } \end{gathered}$
	$\begin{gathered} \text { RA } \\ (\mathrm{h}: \mathrm{m}: \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { Dec } \\ \left({ }^{\circ}:^{\prime}::^{\prime \prime}\right) \end{gathered}$	Major (pc)	Minor (pc)	
NW1 ${ }^{\text {a }}$	4:21:40.1	37:33:55.9	0.223	0.123	135
NW2 ${ }^{\text {a }}$	4:21:37.1	37:35:38.8	0.090	0.076	102
NW3	4:21:17.5	37:34:29.2	0.225	0.112	3
NW4	4:21:13.9	37:36:56.6	0.182	0.128	15
NW5	4:21:32.9	37:32:55.8	0.137	0.063	112
C1	4:25:01.9	37:16:46.3	0.146	0.079	122
$\mathrm{C} 2{ }^{\text {b }}$	4:25:06.8	37:15:39.2	0.087	0.073	79
C3	4:25:12.7	37:12:01.5	0.121	0.099	168
SE1 ${ }^{\text {a }}$	4:25:36.9	37:07:13.2	0.207	0.108	107

a, b Reported by Broekhoven-Fiene+2014 and Harvey+2013

Are the filaments in L1478 gravitationally bound?

The critical line mass or mass per unit length for isothermal cylinder in pressure equilibrium
$M_{\text {line, crit }}=2 c_{s}^{2} / G$ (Ostriker 1964), where c_{s}
 is the isothermal sound speed.

Inutsuka \& Miyama (1992), (1997) showed that an unmagnetized isothermal filament is unstable to axisymmetric perturbations if $M_{\text {line }}>M_{\text {line,crit }}$.

Equilibrium value ($\sim 15 \mathrm{M}_{\odot} \mathrm{pc}^{-1}$)
for isothermal cylinder i pressure equilibrium at 10 K

Is there any mass flow along the filaments?

Hub-Filament structure :

Do cores form by collisions of turbulent flows?

Colliding model (e.g., Padoan et al. 2001) : large scale turbulent flows collide together -> dense cores form due to turbulent dissipation
-> subsonic dense cores + turbulent filaments

- Nonthermal and thermal velocity dispersions:

$$
\begin{aligned}
& \boldsymbol{\sigma}_{\mathrm{NT}}=\left(\boldsymbol{\sigma}_{\mathrm{C} 180}{ }^{2}-k T_{\mathrm{kin}} / m_{\mathrm{C} 180}\right)^{1 / 2} \\
& \boldsymbol{\sigma}_{\mathrm{T}}=\left(k T_{\mathrm{kin}} / m_{\mathrm{H}} \mu\right)^{1 / 2}
\end{aligned}
$$

$\boldsymbol{\sigma}_{\mathrm{C} 180}$ - vel. dispersion from $\mathrm{C}^{18} \mathrm{O}$ FWHM
k - Boltzmann constant
$T_{\text {kin }}$ - dust temperature (assumed as 10 K)
$m_{18 \mathrm{CO}}$ - mass of a C18O molecule
m_{H} - an atomic hydrogen mass
μ - mean molecular weight of a $\mathrm{H}_{2}(=2.72)$
(Myers 1983)

Summary and Conclusions

- FUNS (Filaments, the Universal Nursery of Stars) survey with TRAO
- Filament identification of L1478 with C18O 1-0
- Core identification with $\mathrm{N} 2 \mathrm{H}+1-0$
- CMC is similar to Orion with the mass and size but its star formation property seems to be quite different, i.e., low mass SF
- Filaments with coherent velocity components, and hub-filaments structure
- Core evolutionary stages and mass flow along the filaments

[^0]: ${ }^{a}$ YSOs identified with Spitzer and Herschel (Broekhoven-Fiene et al. 2014)

