

Resolved kinematics of galaxies from Australia SKA Pathfinder (ASKAP) WALLABY

Se-Heon Oh

(KASI)

Lister Staveley-Smith (ICRAR/UWA, Australia) Kristine Spekkens (RMCC, Canada) Peter Kamphuis (NCRA/TIFR, India) Josh Gyula (SKA SA, South Africa) Baerbel Koribalski (CASS/CSIRO, Australia)

+ ASKAP WALLABY kinematics working group

Korea Astronomy and Space Science Institute

'<u>Resolved</u>' kinematic analysis for galaxies (from HI surveys)

1970s	• 25 spiral galaxies from WSRT observations (Bosma 1978)
1990s	 21 spirals in the center of Virgo Cluster from VLA observations (Guhathakurta & van Gorkom 1988) 25 late-type and dwarf galaxies from WSRT WHISP (Swaters 1999) 30 spirals in the Ursa Major Cluster from WSRT observations (Verheijen 1997)
2010s	 21 late-type and dwarf galaxies from VLA THINGS (de Blok et al. 2008; Oh et al. 2008) 52 dwarf galaxies from GMRT FIGGS (Begum et al. 2008) 33 dwarf galaxies from VLA THINGS + LITTLE THINGS (Oh et al. 2011; Oh et al. 2015) 24 spirals from WSRT HALOGAS (Heald et al. 2011) 26 late-type and dwarf galaxies from ATCA LVHIS (Kamphuis et al. 2015; Oh et al. 2018) 35 dwarf galaxies from VLA-ANGST (Ott et al. 2012) 12 dwarf galaxies from VLA SHIELD (McNichols et al. 2016) 300 SAMI galaxies from ATCA IMAGINE (Popping et al.)
2020s onwards	 10,000 resolved galaxies from SKA pathfinders' surveys (ASKAP, MeerKAT & Apertif)

→ need to prepare for the unprecedented data flow from the upcoming 3D spectroscopic galaxy surveys including SKA pathfinders' large surveys

ASKAP large survey proposals

- 12m x 36 dishes, <u>10–30</u> beam (up to 6 km baseline)
- 700 MHz 1.8 GHz (32,768 channels over 300 MHz BW)
- 188 phase array elements → <u>30 deg² FOV</u>
- Continuum & spectral lines
- 12 Phased Array Feeds (PAFs) installed → ASKAP-12 early science observations have been on-going since Oct/2016

10 ASKAP Large Survey Projects

- Evolutionary Map of the Universe (EMU)
- Widefield ASKAP L-Band Legacy All-Sky Blind Survey (WALLABY)
- The First Large Absorption Survey in HI (FLASH)
- An ASKAP Survey for Variables and Slow Transients (VAST)
- The Galactic ASKAP Spectral Line Survey (GASKAP)
- Polarization Sky Survey of the Universe's Magnetism (POSSUM)
- The Commensal Real-time ASKAP Fast Transients survey (CRAFT)
- Deep Investigations of Neutral Gas Origins (DINGO)
- The High Resolution Components of ASKAP: Meeting the Long Baseline Specifications for the SKA (VLBI)
- Compact Objects with ASKAP: Surveys and Timing (COAST)

Korea Astronomy and

MeerKAT large survey proposals

- 13.5m x 64 dishes, 8" beam over <u>1.8 deg² FOV</u>
- Antenna layout: a dense inner component (70%) + an outer component (30%) over 30m to 8 km
- 580 MHz 14.5 GHz (32,768 channels over 300 MHz BW)
- Continuum & spectral lines
- MeerKAT AR1 (16 dishes) has started its early science observation from early 2017

<u>10 MeerKAT Large Survey Projects</u>

- Radio Pulsar Timing: Testing Einstein's theory of gravity and gravitational radiation
- LADUMA (Looking at the Distant Universe with the MeerKAT Array)
- MESMER (MeerKAT Search for Molecules in the Epoch of Re-ionisation)
- MeerKAT Absorption Line Survey for atomic hydrogen and OH lines in absorption against distant continuum sources

• MHONGOOSE (MeerKAT HI Observations of Nearby Galactic Objects: Observing Southern Emitters)

- TRAPUM (Transients and Pulsars with MeerKAT)
- A MeerKAT HI Survey of the Fornax Cluster (Galaxy formation and evolution in the cluster environment)
- MeerGAL (MeerKAT High Frequency Galactic Plane Survey)
- MIGHTEE (MeerKAT International GigaHertz Tiered Extragalactic Exploration Survey)
- ThunderKAT (The Hunt for Dynamic and Explosive Radio Transients with MeerKAT)

WSRT Apertif large survey proposals

ASKAP all-sky HI survey (WALLABY) : Baerbel Koribalski (CASS/CSIRO) & Lister Staveley-Smith (ICRAR/UWA)

- >~500,000 galaxies out to z~0.26 (~1 million if combined with Apertif observations)
- >~5,000 galaxies within 200 Mpc are spatially resolved: Resolved galaxy kinematics!

→ Galaxies in local Universe / (dark) mass distribution in galaxies / Galaxy environments / Intergalactic HI / HI mass function / Galaxy clusters / High-velocity clouds / Multi-frequency synergies etc.

Korea Astronomy and Space Science Institute

2D vs. 3D kinematic analysis

2D kinematic analysis

- Ring-by-ring or entire disk fit to velocity fields projected from 3D cubes
- Affected by projection effect and beam smearing
- Challenging for edge-on like galaxies
- Rotcur / kinemetry / diskfit / nemo

3D kinematic analysis

- Use full information of spectral observations without any compression
- Ring-by-ring or 3D kinematic model fit to 3D cubes
- Less affected by projection effect and beam smearing
- Even works for edge-on like galaxies
- Higher degree of flexibility but CPU expensive and often too sensitive to inhomogeneous gas distributions
- FAT(TiRiFiC) / 3DBAROLO / GBKFIT, GALACTUS

Korea Astronomy and Space Science Institute

(2D) Tilted-ring analysis

 $v_{\text{LOS}}(x, y) = v_{\text{SYS}} + \sin i \{ v_{\text{ROT}}(r) \cos \theta + v_{\text{EXP}}(r) \sin \theta \}$

$$\cos \theta = \frac{-(x - x_C)\sin \phi + (y - y_C)\cos \phi}{r},$$
$$\sin \theta = \frac{-(x - x_C)\cos \phi - (y - y_C)\sin \phi}{r\cos i},$$

• An example of conventional TR analysis

Korea Astronomy and Space Science Institute

Key requirements of the kinematic analysis for WALLABY

: in a 2D perspective (see Kamphuis et al. 2015 for a 3D view)

- Robustness
 - insensitive to initial estimates
 - insensitive to localized outliers
 - flexible regularization for PA/INCL/VEXP/VROT

Efficiency

- fast but reliable fitting of the resolved disk galaxies from the massive WALLABY data stream

• Automation

- determine initial priors
- check convergence

→ Fit 2D kinematic disc models to the entire region of input velocity fields in a Bayesian framework at one time

- \rightarrow Find the best fits via MCMC sampling given priors of the ring parameters
- \rightarrow Parallel processing using multi-cores

Korea Astronomy and

6 §

2D Bayesian Automated Tilted-ring fitter (2DBAT)

2D kinematic model based on B-splines + Einasto rotation velocity

• A log-likelihood function for a Student-t distribution

al. (2018)

2D Bayesian Automated Tilted-ring fitter (2DBAT)

- A standalone code for 2D tilted-ring analysis based on Bayesian MCMC techniques
 - robust & coherent 2D kinematic analysis: (1) masks outlying pixels; (2) estimates priors; (3) regularise ring parameters with B-splines + Einasto profile; (4) carries out Bayesian fits & derives rotation curves
 - fully automated given broadly defined ranges of initial priors for the ring parameters
 - parallelised: Message Passing Interface (MPI) supported
 - written in C with publicly available libraries: MultiNest v3.10 (Feroz & Bridges 2008, 2009), cfitsio, GSL & standard MPI libraries
 - comprise the WALLABY kinematics pipeline together with the automated TiRiFiC (FAT)
 - downloadable at http://github.com/seheonoh/2dbat
 - cross-platform (linux/mac/windows) "*DOCKERIZED*" version available
 - See Oh et al. (2018) for a complete description of the code

2DBAT analysis for artificial galaxies

2DBAT analysis for artificial galaxies

(a) Velocity fields & moment maps (i50d8.0-8.0-dwarf-pa55w0.00-0.00f0.2-0.2ba16SN8)

52 artificial galaxies in Kamphuis et al. (2015)

- two representative rotation curves of intermediate-mass and massive disk galaxies as well as a solid bodylike rotation curve of dwarf galaxies

- 4 km/s of channel resolution
- white noise added
- smoothing the cubes with a Gaussian beam with FWHM of 30"
- Run 2DBAT on their extracted Hermite h3 velocity fields given the degree of regularization in a fully automated manner

Cases of 2DBAT application: (1) Revisit of galaxy kinematics from HI archival data

24 sample galaxies from LVHIS (Koribalski et al.)

Oh et al. (2018)

Korea Astronomy and Space Science Institute

- taken out of a sample of 82 (< 10 Mpc), gas-rich galaxies undertaken with the ATCA

- more or less like those of WALLABY resolved galaxies in terms of the spatial (20-60") and spectral (4 km/s) resolutions as well as the number of resolved elements across the major axis

- also used for testing the performance of FAT in Kamphuis et al. (2015)

 Run 2DBAT on their extracted Hermite h3 velocity fields given the degree of regularization in a fully automated manner

Cases of 2DBAT application: (2) 2D kinematics of SAMI galaxies

Korea Astronomy and Space Science Institute

The Sydney-AAO Multi-object Integral field spectrograph

Scott Croom (for the SAMI team)

Sydney Institute for Astronomy (SIfA) CAASTRO ARC Centre of Excellence University of Sydney

Cases of 2DBAT application: (3) ASKAP Early Science Observations

Survey Science Group Workshop (High-1 Resort 16 Jan 2018)

Kinematic parametre extraction for WALLABY

: ASKAP WALLABY/DINGO (~5,000) + WSRT Apertif (~7,000) galaxies

Summary & (near) future directions

- A new standalone 2D tilted-ring analysis tool (2DBAT) on hand
- Fully automated given broadly defined ranges of initial priors
- Written in C with publicly available libraries: MultiNest v3.10 (Feroz & Bridges 2008), cfitsio, GSL & standard MPI libraries
- Parallelised: Message Passing Interface (MPI) supported
- Comprise the WALLABY kinematics pipeline together with the automated TiRiFiC (FAT)
- See Oh et al. (2018) for a complete description of the code
- Downloadable at http://github.com/seheonoh/2dbat
- Cross-platform (linux/mac/windows) "DOCKERIZED" version available
- Evolution to 3DBAT?
- Applications (e.g.):
 - statistical revisit of resolved galaxy kinematics from all the available archival data
 - Resolved kinematics for ASKAP Early Science Observations
 - 2D kinematic baseline for SAMI

