Status of IR Spectro-Photometric Survey Missions in Space

Woong-Seob Jeong

KASI, Korea

Origin of IR Excess Emission?

Epoch of Reionization? Modern Galaxies form?

- Excess emission in near- & far-infrared
 - High-redshift objects: first stars or first galaxies
 - Low-redshift objects: merging galaxies or stars around galaxy

NISS: Near-IR Imaging Spectrometer onboard NEXTSat-1 (2018~2020)

- Wavelength range: 0.9 ~ 2.5μm
- Array format: 1024 x 1024, FoV: ~2 deg. X 2 deg. (15"resol.)
- 15cm aperture, Imaging & Low-Resolution Spectroscopy (R~20), Sensitivity
 ~17 AB mag. − spectrophotometric survey area ~150 deg² (2-year operation)

Technical Developments (1/3)

Optics

Space optics: shock/vibration, radiation, thermal-vacuum condition

- Off-axis optics / Barrel
 - Reduction of obscuration
 - Afocal system
 - → independent alignment
 - Barrel: flexure / spacer
- Wide wavelength range
 - Filters
 - Coating of lens

Lens

Barrel

Secondar

Primary

Technical Developments (2/3)

Opto-mechanics/Structure

- Shock/vibration: FEM analysis & Support of mirrors
- Stress/Deformation for mirrors
 - 1G gravity
 - Thermal deformation
 - Mis-alignments
- Very compact dewar
- Passive/Active cooling

Technical Developments (3/3)

- Construction of Test Facilities
 - Cryo-chamber for system calibration
 - IR collimating system for optics test
 - Monochromator system for spectral calibration

Calibration of NISS

NEXTSat-1 Test

- Integration of NISS
- Thermal-Vacuum Test
- Vibration Test

Functional Test

NISS Science Cases

- Large Nearby galaxies
- Clusters of galaxies
- Star-forming regions
- Cosmic Near-Infrared Background

λ (μ m)	line	Туре
1.26, 1.64	[Fe II]	Emission
1.875	Pa α	Emission
1.96	[Si IV]	Emission
2.212	H ₂ 1-0 S(1)	Emission

Near-infrared spectral lines

Degree

Kim et al. 2017, submitted

Next Schedule

- Launch @ late 2018: Falcon9 @ SpaceX
- Operation (TBD)
 - Initial operation period: ~3 months
 - Main observation: ~17 months
 - User observation: ~4 months
- New science cases: inviting!

Scientific Targets

Category	Target				
Nearby galaxy	~15 objects (e.g, M31, NGC628)				
Cluster of galaxy	1~2 objects (e.g., Abell 2199)				
Star-forming region	~6 regions (e.g., LMC, SMC)				
CIB observation	1~3 regions (e.g., NEP, SEP)				

All-Sky Spectral Survey Mission: SPHEREX

Review for SMEX (Nov. 2016) Failed → MIDEX

- SPHEREX (MIDEX mission)
- Korean contributions: H/W, S/W & Science
- In Phase-A study

SPHEREX (2022?)

- Spectro-PHotometer for the Extragalactic structure,
 Reionization and ices Explorer
 - as a candidate of NASA MIDEX Mission: Phase-A Study
- Spectro-photometric all-sky survey: 1.4B spectral catalog
 - $(0.75 \sim 4.8 \mu m, R=40 \sim 150)$
 - Galaxies (Emission Line Galaxies)
 - QSOs
 - Galaxy clusters
 - Mass-losing stars
 - Brown dwarfs
 - H₂O ices, ...

SPHEREx is the upgraded mission of the NISS

SPHEREx: All-Sky Legacy Archive

Legacy Science Opportunities: A Few Example

Notable Features of the SPHEREx All-Sky Survey

- High S/N spectrum for every 2MASS source
- Solid detection of faintest WISE sources
- Catalogs ideal for GMT/JWST observations
- Redshifts for other surveys (e.g., eRosita X-Ray survey)
- Photo baselines for wide-field transient survey
- Mapping 3D distribution of Galactic ices

• ...

		אאי	ortunities: A Fe			
Object	# Source	ces	Legacy Science		Reference	
Detected galaxies	1.4 billion		Properties of distant and I vily obscured galaxies			
Galaxies s(z)/(1+z) < 0.03	120 million		Study (H, CO, O, S, H ₂ O) line and PAH emission by galaxy t ype. Explore galaxy and AGN life cycle		Simulation ba sed on COSM OS and Pan-S TARRS	
Galaxies s(z)/(1+z) < 0.003	9.8 million		Cross check of Euclid photo-z . Measure dynamics of group s and map filaments.		TANNO	
QSOs	>1.5 million		Understand QSO lifecycle, en vironment and taxonomy		Ross et al. (2 013) plus sim ulations	
QSOs at z > 7	0-300		Determine if early QSOs exist . Follow-up spectroscopy pro bes EOR through Lya forest			
Clusters with ≥ 5 members	25,000		Redshifts for all eRosita clust ers. Viral masses and merger dynamics		Geach et al., 2011, SDSS c ounts	
X-ray source characterization	>100,000	In conjunction with eROSITA, detect X-ray source SEDs (e.g., AGNs) and their spectroscopic redshifts		Pa	Vorkshop White Paper (Doré et al., 016)	
Missing baryon studies	>10,000	In conjunction with CMB experiments, measure the kSZ signal of galaxy groups and clusters		Fer	oré et al. (2016) erraro et al. (016)	
Exoplanet characterization	>1000	Determine precise radii for exoplanets from host star studies (§E.9.1.2)			Doré et al. (2016)	
Deuterated PAH search	~100				Doré et al. (2016) Doney et al. (2015)	
Lowest metallicity stars	~1000	Identify low-mass stars through- out the Galaxy by their IR sig- natures; and map their distribution			oré et al. (2016)	
Asteroids and comets	10,000/ 100	asteroids; CO/CO ₂ ratio in comets			oré et al. (2016)	
Nearby, resolved galaxies	~100	Spectrally image galaxies to trace stellar populations, star formation, etc.			oré et al. (2016)	

SPHEREX: LSS

1σ errors, statistical	SPHEREX (MEV)			Euclid	C
(systematics)	Pos	Bis	PoS+BiS	(GC)	Current
f	0.86	0.23	0.15	5.59	5.0
t _{NL}	(0.15)	(0.05)	(0.03)	3.38	5.0
Spectral Index n _s (x 10 ⁻³)	2.6	1.5	1.4	2.6	4.0
Running α _s (x10 ⁻³)	1.0	1.0	0.49	1.1	7.5
Curvature Ω_k (x10 ⁻⁴)	7.6	9.5	6.6	7.0	20
Dark Energy FOM	381	NC	NC	309	14

Time Since Big Bang

- Expected Lyman EOR features, with SNR >100 on the RMS fluctuations
- Faint EOR signal using distinctive spectral features and cross-correlations.
- Minimum EOR signal
- Line Intensity Mapping: Amplitude of linear clustering in multiple lines

SPHEREX: Ice Survey

Stages of Star Formation

Abundance and composition of biogenic ices (H₂O, CO₂, CO, XCN and CH₃OH) in dense molecular clouds and protoplanetary disks

KASI's Contribution @ MIDEX

Data reduction pipeline (L0 & L4)

- Science (especially extragalactic science)
 - 2018 Science Workshop @ CfA, Boston
 - Pre-study with NISS
- Ground support equipment for characterizing the instrument (cryo. Chamber, integrating sphere, ground station electronics)
 - Re-design of cryo. chamber
 - Test items: optics & system

Chamber for SPHEREx

Data Reduction & Release

- OLO & L1: System calibration data sets
- o L2 ∼ L4: Sequential release in public
 - L2: Calibrated Spectral Images
 - L3: All-Sky Spectral Catalog
 - L4: Scientific Research Intensity mapping
 - L4-IC: Cosmological Parameters
 - L4-GI: Galactic Ice Parameters
 - L4-GF: Galaxy Formation Parameters

Summary

- O NISS (2018)
 - Full development in Korea: limited resources & manpower!
 - Technical demonstration: spectro-photometry with LVFs
 - Spectro-photometric survey > 150 deg²
 - Launch @ late 2018: Falcon9 @ SpaceX → 2-yr operation
 - New science cases: inviting!
- Contributing sources to CIB?
- SPHEREx (MIDEX mission): all-sky spectrophotometric survey @ 2022?