Current Status of SDSS-IV/V and DESI

Hwang, Ho Seong; Park, Changbom

Korea Institute for Advanced Study

January 15, 2018
The 7th Survey Science Group Workshop

> SDSS-I/II: 2000 - 2008 SEGUE-1 Legacy Supernova > SDSS-III: 2008 - 2014 MARVELS SEGUE-2 SDSS-IV: 2014 - 2020 APOGEE-2 **eBOSS** MaNGA SDSS-V: 2020 - 2024 Milky Way Mapper Black Hole Mapper Local Volume Mapper

© 2017. The American Astronomical Society. All rights reserved.

OPEN ACCESS

Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

Michael R. Blanton¹, Matthew A. Bershady², Bela Abolfathi³, Franco D. Albareti^{4,5,123}, Carlos Allende Prieto^{6,7}, Andres Almeida⁸, Javier Alonso-García^{9,10}, Friedrich Anders¹¹, Scott F. Anderson¹², Brett Andrews¹³, Erik Aquino-Ortíz¹⁴, Alfonso Aragón-Salamanca¹⁵, Maria Argudo-Fernández⁹, Eric Armengaud¹⁶, Eric Aubourg¹⁷, Vladimir Avila-Reese¹⁴, Carles Badenes¹³, Stephen Bailey¹⁸, Kathleen A. Barger¹⁹, Jorge Barrera-Ballesteros²⁰, Curtis Bartosz¹², Dominic Bates²¹, Falk Baumgarten^{11,22}, Julian Bautista²³, Rachael Beaton²⁴, Timothy C. Beers²⁵, Francesco Belfiore^{26,27}, Chad F. Bender²⁸, Andreas A. Berlind²⁹, Mariangela Bernardi³⁰, Florian Beutler³¹, Jonathan C. Bird²⁹, Dmitry Bizyaev^{32,33}, Guillermo A. Blanc²⁴, Michael Blomqvist³⁴, Adam S. Bolton^{23,35}, Médéric Boquien⁹, Jura Borissova^{10,36}, Remco van den Bosch³⁷, Jo Bovy^{38,39,124}, William N. Brandt^{40,41,42}, Jonathan Brinkmann³², Joel R. Brownstein²³, Kevin Bundy^{43,44}, Adam J. Burgasser⁴⁵, Etienne Burtin¹⁶, Nicolás G. Busca¹⁷, Michele Cappellari⁴⁶, Maria Leticia Delgado Carigi¹⁴, Joleen K. Carlberg^{47,48,49}, Aurelio Carnero Rosell^{50,51}, Ricardo Carrera^{6,7}, Nancy J. Chanover⁵², Brian Cherinka²⁰, Edmond Cheung⁴³, Yilen Gómez Magueo Chew¹⁴

Cristina Chiappini 11. Peter Doohyun Choi 53, Drew Chojnowski 52, Chia-Hsun Chuang 1, Haeun Chung 54

2017, AJ, 154, 28

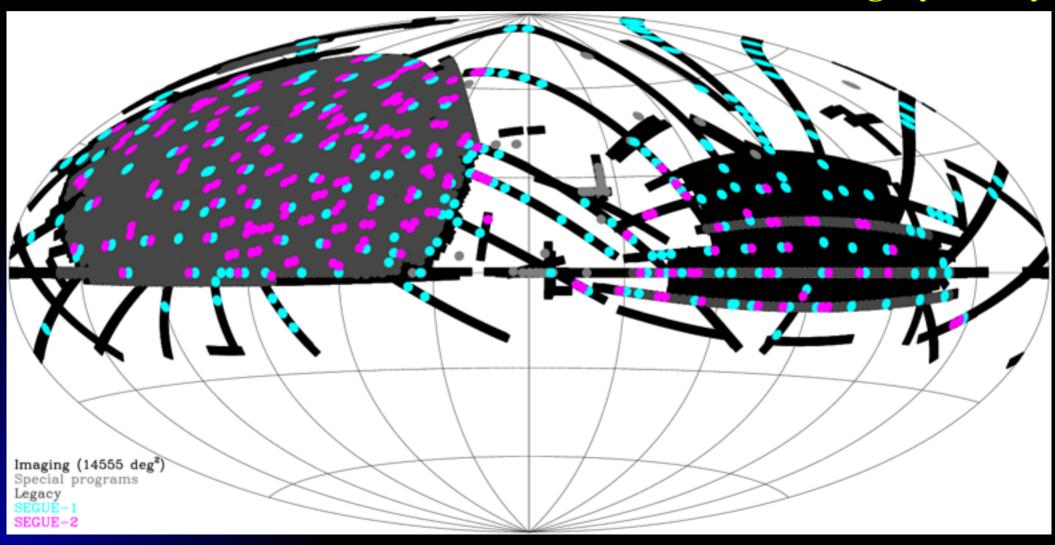
THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 233:25 (25pp), 2017 December © 2017. The American Autonomical Society. All rights reserved.

The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

Franco D. Albareti^{1,2,126}, Carlos Allende Prieto^{3,4}, Andres Almeida⁵, Friedrich Anders⁶, Scott Anderson⁷, Brett H. Andrews⁸, Alfonso Aragón-Salamanca⁹, Maria Argudo-Fernández^{10,11}, Eric Armengaud¹², Eric Aubourg¹³, Vladimir Avila-Reese¹⁴, Carles Badenes⁸, Stephen Bailey¹⁵, Beatriz Barbuy^{16,17}, Kat Barger¹⁸, Jorge Barrera-Ballesteros¹⁹, Curtis Bartosz⁷, Sarbani Basu²⁰, Dominic Bates²¹, Giuseppina Battaglia^{3,4}, Falk Baumgarten^{6,22}, Julien Baur¹², Julian Bautista²³, Timothy C. Beers²⁴, Francesco Belfiore^{25,26}, Matthew Bershady²⁷, Sara Bertran de Lis^{3,4}, Jonathan C. Bird²⁸, Dmitry Bizyaev^{29,30,31}, Guillermo A. Blanc^{32,33,34}, Michael Blanton³⁵, Michael Blomqvist³⁶, Adam S. Bolton^{23,37}, J. Borissova^{38,39}, Jo Bovy^{40,41}, William Nielsen Brandt^{42,43,44}, Jonathan Brinkmann²⁹, Joel R. Brownstein²³, Kevin Bundy⁴⁵, Etienne Burtin¹², Nicolás G. Busca¹³, Hugo Orlando Camacho Chavez^{17,46}, M. Cano Díaz¹⁴, Michael Cappellari⁴⁷, Ricardo Carrera^{3,40}, Yanping Chen⁴⁸, Brian Cherinka¹⁹, Edmond Cheung⁴⁵, Cristina Chiappini⁶, Drew Chojnowski³⁰, Chia-Hsun Chuag⁶, Haeun Chung⁴⁹, Rafael Fernando Cirolini^{17,50}, Nicolas Clerc⁵¹, Roger E. Cohen⁵²,

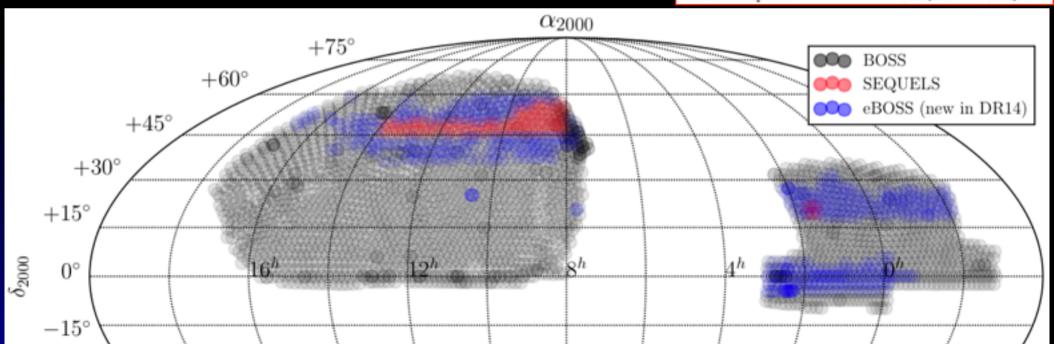
2017, ApJS, 233, 25

THE FOURTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE EXTENDED BARYON OSCILLATION SKY SURVEY AND FROM THE SECOND PHASE OF THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT


Bela Abolfathi¹, D. S. Aguado², Gabriela Aguilar³, Carlos Allende Prieto^{2,4}, Andres Almeida⁵, Tonima Tasnim Ananna⁶, Friedrich Anders⁷, Scott F. Anderson⁸, Brett H. Andrews⁹, Borja Anguiano¹⁰, Alfonso Aragón-Salamanca¹¹, Maria Argudo-Fernández¹², Eric Armengaud¹³, Metin Ata⁷, Eric Aubourg¹⁴, Vladimir Avila-Reese³, Carles Badenes⁹, Stephen Bailey¹⁵, Kathleen A. Barger¹⁶, Jorge Barrera-Ballesteros¹⁷, Curtis Bartosz⁸, Dominic Bates¹⁸, Falk Baumgarten^{7,19}, Julian Bautista²⁰, Rachael Beaton²¹, Timothy C. Beers²², Francesco Belfiore^{23,24,25}, Chad F. Bender²⁶, Mariangela Bernardi²⁷, Matthew A. Bershady²⁸, Florian Beutler²⁹, Jonathan C. Bird³⁰, Dmitry Bizyaev^{31,32,33}, Guillermo A. Blanc²¹, Michael R. Blanton³⁴, Michael Blomqvist³⁵, Adam S. Bolton³⁶, Médéric Boquien¹², Jura Borissova^{37,38}, Jo Bovy^{39,40,41}, Christian Andres Bradna Diaz⁴², William Nielsen Brandt^{43,44,45}, Jonathan Brinkmann³¹, Joel R. Brownstein²⁰, Kevin Bundy²⁵, Adam J. Burgasser⁴⁶, Etienne Burtin¹³, Nicolás G. Busca¹⁴, Caleb I. Cañas⁴³, Mariana Cano-Díaz⁴⁷, Michele Cappellari⁴⁸, Ricardo Carrera^{2,4}, Andrew R. Casey⁴⁹, Yanping Chen⁵⁰, Brian Cherinka⁵¹, Cristina Chiappini⁷, Peter Doohyun Choi⁵², Drew Chojnowski³², Chia-Hsun Chuang⁷, Haeun Chund³³, Nicolas Clerc^{54,55,56}

arXiv:1707.09322

- **>** When?: July 31, 2017
- > To whom: Public


- APOGEE-2 eBOSS MaNGA

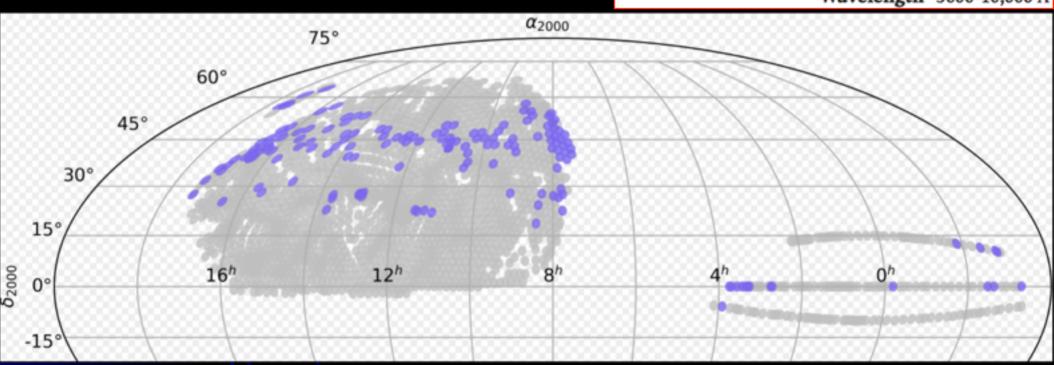
 (BOSS quaser chotering choices golden in the control of the
- ➤ Includes the most current reprocessed imaging and spectra from the SDSS legacy survey

> First spectra of galaxies and quasars from eBOSS [including SPectroscopic IDentfication of ERosita Sources (SPIDERS) & Time-Domain Spectroscopic Survey (TDSS)]

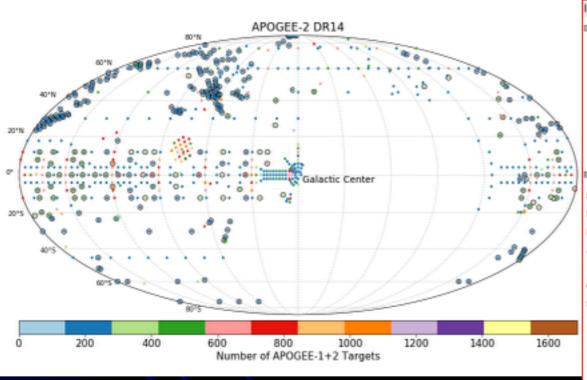
Extragalactic (BOSS/eBOSS)						
Statistic	Total	Unique				
Spectroscopic effective area (deg ²)		9,376				
Plates	3,008 2,913					
Spectra	2,987,105 2,696,2					
All Galaxies	1,608,987	1,493,503				
CMASS	933,387	863,761				
LOWZ	369,673	344,423				
All Quasars	539,297	444,217				
Main	242,556	212,156				
Main, $2.15 \le z \le 3.5$	175,518	150,592				
Stars	335,844	303,518				
Standard stars	62,979	50,574				
Sky	282,344	261,098				
Unclassified spectra	229,418	201,549				

- > More data cubes from MaNGA
 - > 2812 galaxies among 10⁴ targets

IFU spectroscopy (MaNGA)


Total galaxies 2,812

Unique galaxies 2,744


Plate scale 7 deg²

IFUs per plate 17

Wavelength 3600-10,000 Å

> First stellar infrared spectra and stellar parameter determinations from APOGEE-2

Infrared (APOGEE) spectroscopic da	ata statistics
DR14 includes data for ~263,000 APOGEE target	s. This includes 231,000 science targets, located in distinct types of survey field:
~13,000 stars	in Bulge fields
~129,600 stars	in Halo and Halo Stream fields
~76,000 stars	in Disk fields
~3,200 stars	in Satellite Galaxies fields
-400 stars	in Kepler Objects of Interest (KOI) Program fields
~19,500 stars	in Star Cluster fields
~13,300 objects	in Ancillary Science fields
~1000 bright stars	observed with the NMSU 1m telescope - APOGEE, including bright standards $$

Exact counts are given in the table below.

Statistic	Total	Unique
Pointings	-	780
Plates	4,012	1,363
All stars	1,054,381	263,444
with NMSU 1-m	1,438	1,018
Commissioning stars	27,387	12,914
Survey stars	872,844	184,148
with S/N ≥ 100	-	144,309
with ≥ 3 visits	-	143,154
with ≥ 12 visits	-	6,200
Stellar parameter standards	10,006	1,300
Radial velocity standards	288	15
Telluric line standards	128,974	23,611
Ancillary science program objects	37,369	12,641
Kepler target stars	34,789	17,218

A Study of Environmental Effects on Galaxy Spin Using MaNGA Data

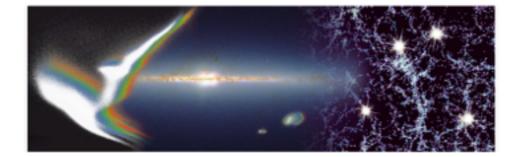
Jong Chul Lee,^{1★} Ho Seong Hwang² and Haeun Chung^{3,4}

Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We investigate environmental effects on galaxy spin using a sample of 1830 galaxies from the recent public data of MaNGA integral field spectroscopic survey. We determine the spin parameter λ_{Re} of galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and study its dependence on the large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environments. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at $\log (M_*/M_\odot) \gtrsim 10$, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

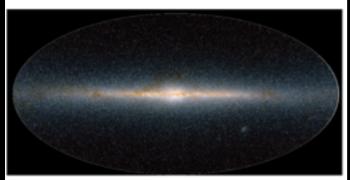

Key words: galaxies: evolution – galaxies: fundamental parameters – galaxies: general – galaxies: interactions – galaxies: kinematics and dynamics

LeeJC+18, MNRAS, submitted

²Quantum Universe Center, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea

³School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea

⁴Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 08826, Korea


Juna A. Kollmeier (OCIS), Gail Zasowski (Utah), Hans-Walter Rix (MPIA), Matt Johns (UA), Scott F. Anderson (UW), Niv Drory (UT), Jennifer A. Johnson (OSU), Richard W. Pogge (OSU), Jonathan C. Bird (Vanderbilt), Guillermo A. Blanc (OCIS), Joel R. Brownstein (Utah), Jeffrey D. Crane (OCIS), Nathan M. De Lee (NKU/Vanderbilt), Mark A. Klaene (APO), Kathryn Kreckel (MPIA), Nick MacDonald (UCSC), Andrea Merloni (MPE), Melissa K. Ness (MPIA), Thomas O'Brien (OSU), José R. Sánchez-Gallego (UW), Conor C. Sayres (UW), Yue Shen (UIUC), Ani R. Thakar (JHU), Andrew Tkachenko (KU Leuven), Conny Aerts (KU Leuven), Michael R. Blanton (NYU), Daniel J. Eisenstein (Harvard), Jon A. Holtzman (NMSU), Dan Maoz (TAU), Kirpal Nandra (MPE), Constance Rockosi (UCSC), David H. Weinberg (OSU), Jo Bovy (Toronto), Andrew R. Casey (Monash), Julio Chaname (Catolica), Nicolas Clerc (MPE/CNRS-IRAP), Charlie Conroy (Harvard), Michael Eracleous (PSU), Boris T. Gänsicke (Warwick), Saskia Hekker (MPS), Keith Horne (St Andrews), Jens Kauffmann (MIT-Haystack), Kristen B. W. McQuinn (UT), Eric W. Pellegrini (Heidelberg), Eva Schinnerer (MPIA), Edward F. Schlafly (LBNL), Axel D. Schwope (AIP), Mark Seibert (OCIS), Johanna K. Teske (OCIS), Jennifer L. van Saders (OCIS), Andres Almeida (U. de La Serena), Brett H. Andrews (Pittsburgh), Maria Argudo-Fernández (Antofagasta), Vladimir Avila-Reese (UNAM), Carles Badenes (Pittsburgh), John Bally (UC-Boulder), Kathleen Ann Barger (TCU), Curtis Bartosz (UW), Sarbani Basu (Yale), Franz E. Bauer (PUC/MAS/SSI), Rachael L. Beaton (Princeton), Francesco Belfiore (UCSC), Eric C. Bellm (UW), Matthew A. Bershady (UW-Madison), Dmitry Bizyaev (APO/NMSU), Médéric Boquien (Antofagasta), Mohamed Bouri (EPFL), W. N. Brandt (PSU), Jonathan Brinkmann (APO), Alyson Brooks (Rutgers), Kevin Bundy (UCSC), Adam J. Burgasser (UCSD), Joleen K. Carlberg (STScI), Stefane Caseiro (EPFL), W. J. Chaplin (Birmingham), Brian Cherinka (JHU), Cristina Chiappini (AIP), Chia-Hsun Chuang (AIP/Stanford), Chris Collins (LJMU), D. Michael Crenshaw (GSU), Katia Cunha (Steward/ON), Julianne J. Dalcanton (UW), Axel de la Macorra (UNAM), Aleksandar M. Diamond-Stanic (Bates College), Francesco Di Mille (LCO/CIS), John Donor (TCU), Tom Dwelly (MPE), Jason D. Eastman (Harvard/CfA), Eric Emsellem (ESO), Xiaohui Fan (UA), J. G. Fernandez-Trincado (Concepción/Besançon), Diane Feuillet (MPIA), N. Filiz Ak (Erciyes), Douglas P. Finkbeiner (Harvard/CfA), Alexis Finoguenov (MPE/Helsinki), Peter M. Frinchabov (TCU),

Rafael A. García (CEA/AIM), Patrick Gaulme (MPS/NMSU), Ortwin Gerhard (MPE),

Bruce Gillespie (JHU), Yilen Gómez Maqueo Chew (UNAM), Paul J. Green (SAO),

arXiv:1711.03234

Milky Way Mapper

A time-domain stellar spectroscopic survey of the Milky Way. (Image credit: 2MASS)

Explore Milky Way Mapper

Contact person: Jennifer Johnson (Ohio State University), johnson.3064@osu.edu

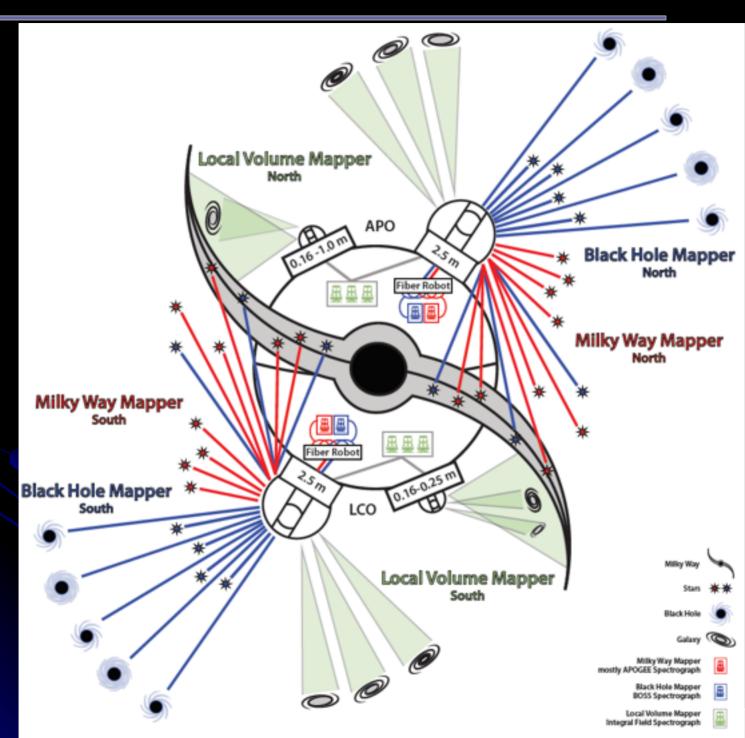
Black Hole Mapper

A time-domain spectroscopic quasar survey. (Image credit: ESO/M. Kornmesser)

Explore Black Hole Mapper

Contact person: Scott Anderson (University of Washington), anderson@astro.washington.edu

Local Volume Mapper



An integral-field survey of the Milky Way and its galactic neighbors. (Image credit: NASA, ESA/A. Nota)

Explore Local Volume Mapper

Contact person: Niv Drory (University of Texas at Austin), drory@astro.as.utexas.edu

Program	Science Targets	N _{Objects} and/or Sky Area	Primary Spectral Range and Hardware	Primary Science Goals
Milky Way Mapper (MWM)	Stars across the Milky Way	>6M stars; all- sky	IR; APOGEE $(R \sim 22,000)$ with fiber-positioning system	Understanding the for- mation of the Milky Way and the physics of its stars
Black Hole Mapper (BHM)	Primarily supermassive black holes	>400,000 sources; all-sky	Optical; e.g., BOSS $(R \sim 2000)$ with fiber-positioning system	Probing black hole growth and mapping the X-ray sky
Local Volume Mapper (LVM)	ISM & stellar populations in the MW, Local Group, and nearby galaxies	>25M contigu- ous spectra over 3,000 deg ²	Optical; new integral field spectrographs covering 3600-10000Å at $R \sim 4000$	Exploring galaxy for- mation and regulation by star formation; feed- back, enrichment, & ISM physics

Wide-field Space Missions Enhanced by SDSS-V					
Mission	Science Goals / Data Products	Timeframe	Primary Mag Range		
Kepler/K2	(transiting) exoplanets & stellar astrophysics seismology from precision lightcurves	2009–2018	$m_V \sim 7-17$; selected fields		
Gaia	positions, distances, motions from astrometry; basic stellar parameters	2013–2020	$m_G \sim 7-19$; all-sky		
TESS	(transiting) exoplanets & stellar astrophysics seismology from precision lightcurves	2018–2022	$m_i \sim 8$ –14; \sim all-sky		
eROSITA	X-ray fluxes & spectra	2018–2022	$f_{0.5-2\text{keV}} > 10^{-14}$ erg s ⁻¹ cm ⁻² ; ~all-sky		

Spectroscopic Survey Facilities by 2020–2025								
Survey (facility)	N _{target}	R _{spectra}	N _{multi}	$\lambda[\mu m]$	$\Omega_{ m sky}$	Nepoch	Timeframe	$m_{ m primary}$
SDSS-V	7 × 10 ⁶	22,000	500	1.51-1.7	4π	1-174	2020-2024	$m_H \lesssim 13.4$
3 D 33-1	/ ^ 10	2,000	500	0.37-1.0	77	1-174	2020-2024	$m_i \lesssim 20$
Gaia (RVS)	8×10^{6}	11,000	_	0.85-0.87	4π	~60	2013–2020	$m_G \lesssim 12$
Gaia-ESO	0.1×10^{6}	17,000	140	0.55 & 0.85	0.02π	~1	2013–2018	$m_G \lesssim 17$
GALAH	0.8×10^{6}	28,000	400	0.40-0.85	π , $ b \ge 10$	~1	2015–2020	$m_G \lesssim 13$
WEAVE	0.8×10^{6}	5,000	1000	0.37-0.9	$\sim \pi$	~1-2	2018–2023	$m_G \lesssim 19$
		20,000		0.57-0.9		1-2		
DESI	4×10^7	3,000	5000	0.36-0.98	$ 1.35\pi, b \ge 25^{\circ}$	1–4	2019–2024	$m_r \lesssim 23$
LAMOST	8×10^{6}	1,800	4000	0.4-0.9	0.5π	~1	2010–2020	$m_G \lesssim 16$
4MOST	10×10 ⁶	5,000	1600	0.4-0.9	1.5π	1–2	2023–2028	$m_r \lesssim 22$
40001	10 × 10	20,000	800	0.4-0.9	1.5%	1-2	2023-2026	$m_V \lesssim 16$
APOGEE-1& 2	5×10^{5}	22,000	300	1.51–1.7	0.5π	~1-30	2011–2019	$m_H \lesssim 12.2$
PFS	1×10^{6}	3,000	2400	0.4-1.6	0.05π	1	2018–2021	$m_i \lesssim 23$
MOONS	2×10 ⁶	5,000	1000	0.6–1.8	0.05π	1	2020–2025	$m_g \lesssim 22$
MOONS	2 × 10	20,000	0,000	0.0-1.0	0.03%	•	2020-2023	$m_H \lesssim 17$

DESI (Dark Energy Spectroscopic Instrument)

- ➤ Imaging & Spectroscopic Survey with 4m Mayall telescope
- > 2018 2022

The DESI Experiment Part I: Science, Targeting, and Survey Design

arXiv:1611.00036

DESI Collaboration: Amir Aghamousa⁶⁸, Jessica Aguilar⁷⁰, Steve Ahlen⁷⁸, Shadab Alam^{27,56}, Lori E. Allen⁷⁴, Carlos Allende Prieto⁶⁰, James Annis⁴⁸, Stephen Bailey⁷⁰, Christophe Balland⁸², Otger Ballester⁵⁴, Charles Baltay⁷⁷, Lucas Beaufore⁴¹, Chris Bebek⁷⁰, Timothy C. Beers³⁶, Eric

The DESI Experiment Part II: Instrument Design

arXiv:1611.00036

DESI Collaboration: Amir Aghamousa⁶⁸, Jessica Aguilar⁷⁰, Steve Ahlen⁷⁸, Shadab Alam^{27,56}, Lori E. Allen⁷⁴, Carlos Allende Prieto⁶⁰, James Annis⁴⁸, Stephen Bailey⁷⁰, Christophe Balland⁸², Otger Ballester⁵⁴, Charles Baltay⁷⁷, Lucas Beaufore⁴¹, Chris Bebek⁷⁰, Timothy C. Beers³⁶, Eric

Conclusion

- > SDSS-IV is going well! (2014-2020)
 - > DR14 is currently available
 - > SDSS-V is being ready
- > DESI is also going well! (2018-2022)
 - > Some imaging data are available.