Cosmic Microwave Background Radiation

Cosmology is the study of our universe. The modern cosmology has begun when the general theory of relativity was founded by A. Einstein and the cosmic expansion was observed by E. Hubble. The development of realistic cosmological models has been accelerated with the discovery of the 2.7 K blackbody radiation that exists everywhere homogeneously and isotropically. Since the intensity of the thermal radiation is strong at microwave band, we simply call it the cosmic microwave background radiation (CMB). The existence of CMB indicates that the universe was in a very hot phase at the early epoch and was filled with hot, uniform soup of fundamental particles, and has been considered as direct evidence for the Big Bang. Although the Big Bang model can explain the abundance of light elements such as hydrogen, helium, and lithium, it cannot explain inhomogeneous matter distribution we observe today.

According to the standard cosmological model, the large-scale structures have been formed from the primordial matter fluctuations through the gravitational evolution during over 10 billion years. The primordial fluctuations, which are expected to have fractional amplitudes of 10-5 at superhorizon scales, were discovered by the COBE/DMR in 1992 as minute fluctuations in CMB temperatures (anisotropy). The theory of adiabatic initial condition and inflation has been successful in explaining the origin of the primordial fluctuations, giving predictions consistent with the present observation of the CMB anisotropy (Figure 1).

 


Figure 1: Brief History of the Universe Being Observed by the WMAP (http://lambda.gsfc.nasa.gov)

 

The CMB radiation anisotropy is a snapshot of the universe when it was only 380,000 years, and is a unique tool for probing the early universe because it directly reflects the early matter fluctuations of the universe. The WMAP observess the minute temperature fluctuations at 23-94 GHz frequency range, with maximum angular resolution of 0.21 degree. The WMAP satellite has also observed the CMB polarization that is much weaker (a few ¥ìK levels) than the temperature anisotropy. The CMB photons were linearly polarized when they last-scattered with electrons at the decoupling surface. Beause the polarization angle and intensity are tightly related with radiation field surrounding the electrons, we expect that the polarized signal is correlated with temperature fluctuations. In practice, the observed temperature fluctuation is the sum of the CMB signal, instrument noise, and contaminating signals from the Galactic and extragalactic sources. For accurate measurement of statistical properties of CMB, subtracting the foreground contribution is very important. For example, a foreground-reduced CMB map is shown in Figure 2, where the map has been produced from the linear combination of five WMAP maps at different frequencies by constraining the variance of the combined map to be minimized.


Figure 2: A foreground-reduced CMB temperature anisotropy map (1.4 degree resolution) produced by applying the internal linear combination method (Park, Park & Gott 2007).


Cosmologists often use two-point statistics (correlation function and power spectrum) as the primary tool for constraining the cosmological model. If the field is Gaussian, the statistical property of the field can be completely described by the two-point statistics. The power spectrum is measured from the density field by applying the maximum likelihood or Fourier transform methods. The fluctuations in the density field are decomposed into waves with different wavelengths, and the power spectrum is obtained as the amplitude variance of the waves at each wave number. For CMB data, angular power spectrum Cl at each multipole l is measured from the spherical harmonic expansion of the temperature fluctuations on the sphere. The power spectra measured from the WMAP CMB temperature and polarizationi data are shown in Figure 3, where power spectra of other CMB experiments are plotted for comparison. Two model power spectra of the best-fit ¥ËCDM model and flat CDM model with ¥Ë=0 are also shown.


Figure 3: Angular power spectra measured from CMB temperature and polarization data from WMAP, Acbar, Boomerang, and CBI, denoted as ClTT for temperatures and ClTE for temperature-polarization cross-correlation.

The appearance of the CMB anisotropy power spectrum implies that our universe started from the adiabatic initial conditions. The first acoustic peak is obviously seen in the temperature (TT) power spectrum at l=220 (about 0.8 degree scale). The location of the first acoustic peak corresponds to the sound horizon size at the decoupling epoch. Inside the horizon, acoutic modes of photon-baryon fluid were oscillating with compression and rarefaction, which induce a series of acoustic peaks and troughs.
In the temperature-polarization (TE) cross-power spectrum, non-zero correlation on both large (from reionization) and small (from adiabatic fluctuations) angular scales have been detected . Especially, the former is the signature of ionization of primordial hydrogen and helium due to the formation of the first stars and galaxies. The detection of the reionization of the universe corresponds to an optical depth ¥ó = 0.088, and an epoch z=11 (or t=400 Myrs after the Big Bang).

The WMAP team has derived cosmological parameters from the temperature and polarization power spectra of the WMAP 3-year data. The CMB temperature and polarization data implies that the observed CMB fluctuations are consistent with predictions of the concordance flat ¥ËCDM model with adiabatic fluctuations which have been generated during the inflationary epoch. The most important result is that the energy content of the universe is 76% of dark energy and 24% of matter. The ordinary matter (baryon) contributes only 4% to the total energy content. The luminous stars and galaxies that we see today are only a small part of the total material in the universe. The most material exists as dark matter. Furthermore, the present universe is dominated by the dark energy, and is being accelerated.

The KIAS cosmology group studies the statistical properties of the CMB anisotropy. For this purpose, the group have been developing efficient algorithms to remove the Galactic foreground emission in the observed CMB maps. Anothor research subject is to quantify the level of non-Gaussianity from the observed CMB temperature fluctuations. For example, the genus statstic can be measured from the WMAP data to test for the Gaussianity of such primordial fluctuations.

 

¿ìÁÖ¹è°æº¹»ç

 

¿ìÁÖ·ÐÀº °úÇÐÀû »ç°í¿Í °üÃø ÀÚ·á ºÐ¼®À» ÅëÇÏ¿© ¿ìÁÖÀÇ »ý¼º°ú ÁøÈ­¿¡ °üÇÑ Àǹ®Á¡À» Ç®¾î°¡´Â °úÇÐÀÇ ÇÑ ºÐ¾ßÀÌ´Ù. Çö´ë¿ìÁÖ·ÐÀº ¾ÆÀν´Å¸ÀÎ(Einstein)ÀÌ 1915³â ÀϹݻó´ë¼º ÀÌ·ÐÀ» È®¸³Çϰí, 1917³â ±ÕÀÏ µî¹æÇÑ Á¤ÀûÀÎ ¿ìÁÖ¸ðÇüÀ» Á¦¾ÈÇϸ鼭 ½ÃÀ۵Ǿú´Ù. 1920³â´ë¿¡ µé¾î¿Í ÇÁ¸®µå¸¸(Friedmann)Àº ¿ìÁÖÀÇ ÆØÃ¢°ú ¼öÃàÀ» Æ÷ÇÔÇÏ´Â ´õ¿í ÀϹÝÀûÀÎ ¿ìÁÖ ÁøÈ­½ÄÀ» À¯µµÇØ ³»¾ú°í, ·Î¹öÆ®½¼(Robertson)°ú ¿öÄ¿(Walker)´Â ÇÁ¸®µå¸¸ ¿ìÁÖ¸ðÇüÀÇ ÀÌ·ÐÀû Åä´ë¸¦ º¸¿ÏÇÏ¿© ÇöÀç ÇÁ¸®µå¸¸-·Î¹öÆ®½¼-¿öÄ¿(FRW) ¿ìÁÖ¸ðÇüÀ¸·Î ºÒ¸®´Â ±ÕÀÏ µî¹æÇÑ ¿ìÁÖ¿¡ °üÇÑ ¹°¸®Àû ¸ðÇüÀ» ¿Ï¼ºÇÏ¿´´Ù. 1929³â Çãºí(Hubble)Àº ¿ÜºÎÀºÇÏÀÇ ÈÄÅð¼Óµµ¿Í °Å¸®ÀÇ ºñ·Ê°ü°è(ÇãºíÀÇ ¹ýÄ¢)·ÎºÎÅÍ ¿ìÁÖÀÇ ÆØÃ¢À» ¹ß°ßÇÏ¿´´Âµ¥, À̺¸´Ù ¾Õ¼­ ¸£¸ÞÆ®¸£(Lemaitre)´Â ÇãºíÀÇ ¹ýÄ¢À» ÀÌ·ÐÀûÀ¸·Î À¯µµÇÏ¿´À» »Ó¸¸ ¾Æ´Ï¶ó ¹°Áú, ¿¡³ÊÁö°¡ ÇÑ Á¡¿¡ ÁýÁßµÈ »óÅ¿¡¼­ ¿ìÁÖ°¡ »ý°Ü³ª ÆØÃ¢ÇØ¿Ô´Ù´Â ³»¿ëÀÇ ´ëÆø¹ß ¿ìÁÖ¸ðÇüÀ» óÀ½À¸·Î »ý°¢Çس´Ù. ÇãºíÀÇ ¿ìÁÖÆØÃ¢ ¹ß°ßÀº ´ëÆø¹ß ¿ìÁÖ¸ðÇüÀ» µÞ¹ÞħÇÏ´Â °áÁ¤ÀûÀÎ Áõ°Å·Î »ý°¢µÇ°í ÀÖ´Ù.

 

 ´ëÆø¹ß ¸ðÇü°ú ¿ìÁÖ¹è°æº¹»ç´Â ¹«¾ùÀϱî? ´ëºÎºÐÀÇ °úÇÐÀÚµéÀº ¿ì¸®¿ìÁÖ°¡ ¾à 137¾ï ³â Àü ±Øµµ·Î ¶ß°Å¿î »óÅ¿¡¼­ ´ëÆø¹ß°ú ±ÞÆØÃ¢À» °ÞÀ¸¸ç »ý°Ü³µ´Ù°í »ý°¢Çϰí ÀÖ´Ù. ´ëÆø¹ß ¿ìÁÖ¸ðÇü¿¡ µû¸£¸é, ÅÂÃÊÀÇ ¶ß°Å¿î ¿ìÁÖ ¼Ó¿¡´Â ºû, ÀüÀÚ, ¾ç¼ºÀÚ¿Í °°Àº ¼ö¸¹Àº ±âº» ÀÔÀÚµéÀÌ ¼­·Î µÚ¼¯¿© Ãæµ¹ÇÏ¸ç ¿­ÀûÆòÇü»óŸ¦ À¯ÁöÇϰí ÀÖ¾ú´Ù. ¿­ÀûÆòÇü»óÅÂÀÇ ºûÀº ÇöûÅ©ÀÇ ÈæÃ¼º¹»ç ½ºÆåÆ®·³À» °®´Â´Ù°í ¾Ë·ÁÁ® ÀÖÀ¸¸ç ÈæÃ¼º¹»çÀÇ ¿Âµµ¸¸ ¾Ë¸é ƯÁ¤ Áøµ¿¼ö¿¡¼­ ºûÀÇ ¼¼±â¸¦ Á¤È®È÷ ¾Ë¾Æ³¾ ¼ö ÀÖ´Ù. ÀÌ ÈæÃ¼º¹»çÀÇ ¿Âµµ´Â ¿ìÁÖ°¡ ÆØÃ¢ÇÔ¿¡ µû¶ó ³»·Á°¡´Âµ¥ ÀÌ´Â °ø±â¸¦ ´Ü¿­ ÆØÃ¢½ÃŰ¸é °ø±â°¡ Â÷°¡¿öÁö´Â ¿ø¸®¿Í ºñ½ÁÇÏ´Ù. ¿ìÁÖÀÇ ³ªÀ̰¡ 38¸¸³â Á¤µµ µÇ¾úÀ» ¶§, ÆØÃ¢ÇÏ¸ç ½Ä¾î°¡´ø ¿ìÁÖÀÇ ¿Âµµ´Â ¾à 3000 K Á¤µµ·Î ³»·Á°¬°í, ÀÌ¿ÂÈ­µÅ ÀÖ´ø ¼ö¼Ò¿Í Çï·ý ¿øÀÚÇÙ°ú ÀÚÀ¯·Ó°Ô ³¯¾Æ´Ù´Ï´ø ÀüÀÚ´Â ¼­·Î ´Þ¶óºÙ°Ô µÅ Áß¼º¿øÀÚ¸¦ Çü¼ºÇÏ¿´´Ù. ºû°ú ½¢ÇÏ°Ô Ãæµ¹ÇÏ´ø ÀüÀÚ°¡ ±Þ°ÝÈ÷ »ç¶óÁ®¹ö¸®ÀÚ ºûÀº ¹°Áú°ú ´õ ÀÌ»ó ºÎµúÄ¡Áö ¾Ê°í ÀÚÀ¯·Ó°Ô ¿ìÁÖ°ø°£À» ÆÛÁ® ³ª°¡±â ½ÃÀÛÇÏ¿´´Âµ¥, ÀÌ ½Ã±â¸¦ ºûÀÇ ºÐ¸®½Ã±â(decoupling era) ¶Ç´Â Àç°áÇսñâ(recombination era)¶ó°í ÇÑ´Ù. ÀÌ ºûÀº ÈæÃ¼º¹»çÀÇ ½ºÆåÆ®·³ ¼ºÁúÀ» ±×´ë·Î °£Á÷ÇÑ Ã¤ ¾ÆÁ÷±îÁöµµ ¿ìÁÖ¸¦ ¶°µ¹¾Æ´Ù´Ï¸ç ½Ä¾î°¡°í ÀÖ´Ù. ¿ìÁÖ Àüü¿¡ ±ÕÀÏÇÏ°Ô ÆÛÁ® ÀÖ´Â ÀÌ ºûÀ» ¿ìÁÖ¹è°æº¹»ç(éÔñµÛÎÌØÜßÞÒ, cosmic microwave background radiation)¶ó°í ÇÑ´Ù. ¿ìÁÖ¹è°æº¹»ç´Â ÇöÀç 2.73 KÀÎ Â÷°¡¿î ÈæÃ¼º¹»ç·Î Á¸ÀçÇϸç, ´ëÆø¹ß¿¡ ÀÇÇÑ ¿ìÁÖ ±â¿ø¼³À» µÞ¹ÞħÇÏ´Â Á÷Á¢ÀûÀÎ Áõ°Å·Î »ý°¢µÇ°í ÀÖ´Ù (±×¸² 1).


¿ìÁְŴ뱸Á¶, ÀºÇÏ´Ü, ÀºÇÏ, º°, žç°è¿¡ À̸£±â±îÁö °®°¡Áö ±Ô¸ðÀÇ ¿ìÁÖ ±¸Á¶µéÀº ¸ðµÎ ¹°ÁúÀÇ Á߷¼öÃà¿¡ ÀÇÇÏ¿© »ý°Ü³µ´Ù. ¸¸¾à Ãʱ⠿ìÁÖÀÇ ¹°ÁúºÐÆ÷°¡ ±ÕÀÏÇÏ¿´´Ù¸é À̵éÀº »ý¼ºµÉ ¼ö ¾øÀ¸¸ç, Á߷¼öÃà¿¡ ÀÇÇÑ ±¸Á¶Çü¼ºÀº ¹Ýµå½Ã ¹°ÁúºÐÆ÷ÀÇ ¿äµ¿(fluctuation)ÀÌ Á¸ÀçÇØ¾ß¸¸ °¡´ÉÇÏ´Ù. °úÇÐÀÚµéÀº ¿ìÁְŴ뱸Á¶ÀÇ ¾¾¾ÑÀÌ Á¸ÀçÇÏ¿´À» °ÍÀ̶ó´Â Á¡°ú ¿ìÁÖ¹è°æº¹»ç°¡ ºûÀÇ ºÐ¸®½Ã±â ºÒ±ÕÀÏÇÑ ¹°ÁúºÐÆ÷¿¡ ´ëÇÑ Á¤º¸¸¦ ´ã°í ÀÖÀ» °ÍÀ̶ó´Â Á¡À¸·ÎºÎÅÍ ¿ìÁÖ¹è°æº¹»çÀÇ ¿Âµµ´Â ÇÏ´ÃÀ» ¹Ù¶óº¸´Â ¹æÇâ¿¡ µû¶ó Àý´ë¿Âµµ 2.73 KÀÇ 10¸¸ºÐÀÇ 1 Á¤µµ ´Þ¶óÁö´Â ¹Ì¼¼ÇÑ ¿Âµµ º¯È­(¼ö½Ê ¥ìK)¸¦ Áö´Ï°í ÀÖÀ» °ÍÀ¸·Î ¿¹ÃøÇØ ¿Ô´Ù. À̸¦ ¿ìÁÖ¹è°æº¹»ç ¿ÂµµÀÇ ºñµî¹æ¼º(anisotropy)À̶ó°í ÇÑ´Ù. ¿ìÁÖ¹è°æº¹»çÀÇ ºñµî¹æ¼ºÀº Àç°áÇÕ ½Ã±â(t0=38¸¸ ³â) ¿ìÁÖÀÇ ¸ð½ÀÀ» ÂïÀº »çÁøÀÌÀÚ ¿ìÁÖ ±¸Á¶Çü¼ºÀÇ ÃʱâÁ¶°ÇÀ» ´ã°í ÀÖ´Â ¾ÏÈ£¹®ÀÌ´Ù.  ÄÚºñÀÇ µÚ¸¦ ÀÌ¾î ¹ß»çµÈ WMAPÀº ¿ìÁÖ¹è°æº¹»çÀÇ ¿Âµµ¿äµ¿À» 23~94 GHz Á֯ļö ¿µ¿ª¿¡¼­ 0.21° °íÇØ»óµµ·Î ´õ¿í Á¤È®È÷ °üÃøÇÏ¿© Ç¥ÁØ¿ìÁÖ¸ðÇüÀ» ±¸¼ºÇÏ´Â ¿ìÁÖ·ÐÀû °è¼öµé(cosmological parameters)ÀÌ ¼ö % Á¤¹Ðµµ·Î °áÁ¤µÉ ¼ö ÀÖµµ·Ï ÇÏ´Â µî ¿ìÁÖ·Ð ¿¬±¸¿¡ ȹ±âÀûÀÎ ¹ßÀüÀ» °¡Á®¿Ô´Ù. ±×¸² 2Àº WMAP À§¼ºÀÌ 3³â µ¿¾È °üÃøÇÏ¿© ¾ò¾î³½ ÀÚ·á¿¡¼­ ¿ì¸®ÀºÇÏÀÇ °­ÇÑ ¹æÃâ¼±À» Á¦°ÅÇÏ¿© ³ªÅ¸³½ ¿ìÁÖ¹è°æº¹»çÀÇ ¿Âµµ ¿äµ¿ÁöµµÀÌ´Ù.

\

±¸¸é »óÀÇ º¹ÀâÇÑ ¿äµ¿Àº ÆÄÀåÀÌ ±ä °ÍºÎÅÍ ÂªÀº °Í±îÁö ´Ù¾çÇÑ ÆÄµ¿À¸·Î ºÐ·ùÇØ ³¾ ¼ö ÀÖÀ¸¸ç, WMAPÀÌ °üÃøÇÑ ¹è°æº¹»çÀÇ ¿Âµµ¿äµ¿µµ ÆÄÀåÀÌ 90°~0.21°ÀÎ ´Ù¾çÇÑ ÆÄµ¿ÀÇ Á¶ÇÕÀ¸·Î ±â¼úÇÒ ¼ö ÀÖ´Ù. ±×¸² 3Àº WMAPÀÇ 3³â °üÃø ÀÚ·á·ÎºÎÅÍ ÃøÁ¤ÇÑ ¿ìÁÖ¹è°æº¹»ç ¿Âµµ¿äµ¿(À§)°ú ¿Âµµ-Æí±¤ »ó°ü¼º(¾Æ·¡) ÆÄ¿ö½ºÆåÆ®·³ÀÌ´Ù(»¡°£»ö). ¿Âµµ¿äµ¿ÀÇ ÆÄ¿ö½ºÆåÆ®·³ ±×·¡ÇÁ¿¡´Â ÄÚºñ DMR ÀÚ·á¿¡¼­ ¾òÀº ÆÄ¿ö½ºÆåÆ®·³(³ë¶õ ´ÙÀ̾Ƹóµå)°ú ÃÖ±Ù Boomerang(ÆÄ¶õ»ö), Acbar(³ì»ö), CBI(°¥»ö) ½ÇÇè¿¡¼­ ¾òÀº °á°úµéÀÌ ÇÔ²² Ç¥½ÃµÇ¾î ÀÖ´Ù. ±½°í °ËÀº °î¼±Àº ¾ÏÈæ¹°Áú°ú ¾ÏÈæ¿¡³ÊÁö·Î Â÷ÀÖ´Â ÆòźÇÑ ¿ìÁÖ¸ðÇüÀÇ ÀÌ·ÐÀû ¿¹ÃøÀ» ³ªÅ¸³½´Ù. ȸ»ö °î¼±Àº ¾ÏÈæ¹°Áú·Î¸¸ ä¿öÁø ÆòźÇÑ ¿ìÁÖ¸ðÇüÀÇ ¿¹ÃøÀ¸·Î¼­ WMAPÀÇ °üÃø °á°ú¿Í Àß ¸ÂÁö ¾ÊÀ½À» º¸¿©ÁØ´Ù. WMAP ¿ìÁÖ¹è°æº¹»ç ¿Âµµ¿äµ¿ÀÇ ÆÄ¿ö½ºÆåÆ®·³¿¡¼­ ÇÑ °¡Áö Áß¿äÇÑ Æ¯Â¡Àº l=220 °¡±îÀÌ¿¡ ù° ºÀ¿ì¸®°¡ À§Ä¡ÇÑ´Ù´Â °ÍÀÌ´Ù. ÆÄ¿ö½ºÆåÆ®·³¿¡¼­ ù° ºÀ¿ì¸®ÀÇ À§Ä¡´Â ¿ìÁÖÀÇ ±âÇÏÇÐÀû ±¸Á¶¿Í ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖ´Ù. ¿ìÁÖ°¡ ÆòźÇϸé l=220¿¡, ´ÝÇô ÀÖÀ¸¸é l<220¿¡, ¿­·Á ÀÖÀ¸¸é l>220¿¡ À§Ä¡ÇÑ´Ù. µû¶ó¼­ WMAP ÆÄ¿ö½ºÆåÆ®·³ÀÇ Ã¹Â° ºÀ¿ì¸® À§Ä¡·ÎºÎÅÍ ¿ì¸®¿ìÁÖ°¡ ¸Å¿ì ÆòźÇÔÀ» ¾Ë ¼ö ÀÖ´Ù. WMAP°ú ´Ù¸¥ °íÇØ»óµµ ½ÇÇèÀÇ °á°ú¿¡ µû¸£¸é, ¿ìÁÖ¹è°æº¹»çÀÇ ¿Âµµ¿äµ¿Àº ¾à 1° ±Ô¸ð¿¡¼­ ÆÄ¿ö°¡ °¡Àå ¼¼¸ç ÀÛÀº ±Ô¸ð·Î °¥¼ö·Ï ÆÄ¿ö°¡ Áõ°¨À» °ÅµìÇϸ鼭 ³·¾ÆÁø´Ù. WMAPÀº 1° ÀÌÇÏ ±Ô¸ð¿¡¼­ ³ªÅ¸³ª´Â ¿ìÁÖ¹è°æº¹»ç ¿Âµµ¿äµ¿°ú Æí±¤ÀÌ ¿ìÁÖ Ãʱ⿡ Á¸ÀçÇÑ ´Ü¿­Àû(adiabatic) ¿äµ¿ÀÇ À½ÆÄÁøµ¿À¸·ÎºÎÅÍ »ý°Ü³µ´Ù´Â °ÍÀ» Á¤È®È÷ ¹àÇô³ÂÀ¸¸ç, ÀÌ´Â ±ÞÆØÃ¢ ¿ìÁÖ¸ðÇüÀ» ÁöÁöÇÏ´Â °áÁ¤ÀûÀÎ Áõ°Å·Î »ý°¢µÇ°í ÀÖ´Ù.

 

Çö´ë¿ìÁÖ·ÐÀÇ ÁÖ¿ä ¸ñÇ¥´Â õ¹®°üÃø ÀÚ·á¿Í °¡Àå Àß ¸Â´Â ¿ìÁÖ¸ðÇüÀ» ¸¸µé°í ±× ¿ìÁÖ¸ðÇüÀ» ±ÔÁ¤Áþ´Â ¿ìÁÖ·ÐÀû °è¼öµéÀ» Á¤È®ÇÏ°Ô ÃøÁ¤ÇÏ´Â °ÍÀÌ´Ù. ¹°Áú°ú ¿¡³ÊÁö ºÐÆ÷¿¡ ¼·µ¿À» °¡ÇØ ¾òÀº Ç¥ÁØ FRW ¿ìÁÖ¸ðÇü¿¡¼­ ºûÀÇ ºÐÆ÷ÇÔ¼ö¸¦ ½Ã°£¿¡ µû¶ó ÁøÈ­½Ã۸é ƯÁ¤ ¿ìÁÖ¸ðÇü¿¡¼­ ¿¹ÃøµÇ´Â ¿ìÁÖ¹è°æº¹»ç ¿Âµµ¿äµ¿°ú Æí±¤ÀÇ ÆÄ¿ö½ºÆåÆ®·³À» ÀÌ·ÐÀûÀ¸·Î ±¸Çس¾ ¼ö ÀÖ´Ù. °úÇÐÀÚµéÀº °üÃø ÀÚ·á¿¡¼­ ±¸ÇÑ ÆÄ¿ö½ºÆåÆ®·³À» Ç¥ÁØ¿ìÁÖ¸ðÇü¿¡¼­ ¿¹ÃøÇÑ ÀÌ·ÐÀûÀÎ ÆÄ¿ö½ºÆåÆ®·³(±×¸² 3ÀÇ ±½Àº ¼±)°ú ºñ±³ÇÏ¿©, °üÃø ÀڷḦ °¡Àå Àß ¸ÂÃß´Â ¿ìÁÖ·ÐÀû °è¼öµéÀ» ã¾Æ³½´Ù.  WMAP ÆÀÀº, ¿ì¸®¿ìÁÖ°¡ °ø°£ÀûÀ¸·Î ÆòźÇÏ¸ç ³ªÀÌ´Â 137¾ï ³âÀ̶ó´Â °Í, Àüü ¿¡³ÊÁö Áß ¹Ù¸®¿Â(º¸Åë¹°Áú)ÀÌ Â÷ÁöÇÏ´Â ºñÀ²Àº °Ü¿ì 4% Á¤µµÀ̰í, ¾ÏÈæ¿¡³ÊÁö¿Í Â÷°¡¿î ¾ÏÈæ¹°Áú(cold dark matter; CDM)ÀÌ °¢°¢ 76%¿Í 20%³ª Â÷ÁöÇϰí ÀÖ´Â °ÍÀ» ¹àÇô³»¾ú´Ù. ¾ÏÈæ¿¡³ÊÁö´Â ¾ÆÀν´Å¸ÀÎÀÌ Á¤Àû ¿ìÁÖ¸ðÇü¿¡ µµÀÔÇÏ¿´´ø ¿ìÁÖ»ó¼ö ¥Ë·Î º¸Åë Ç¥ÇöµÇ¸ç, Áß·ÂÀÇ ¹Ý´ë ¼ºÁúÀ» Áö´Ï°í ÀÖ¾î ÇöÀç ¿ì¸®¿ìÁÖÀÇ °¡¼ÓÆØÃ¢¿¡ ´ëÇÑ ¿øÀÎÀ¸·Î »ý°¢µÇ°í ÀÖ´Ù. ¿ì¸®¿ìÁÖ¸¦ °¡Àå °¡±õ°Ô ±â¼úÇÏ´Â ÀÌ FRW ¸ðÇüÀ» ÆòźÇÑ ¥ËCDM ¿ìÁÖ¸ðÇüÀ̶ó°í ºÎ¸¥´Ù.

 

°íµî°úÇпøÀÇ ¿ìÁÖ·Ð ±×·ìÀº ¿ìÁÖ¹è°æº¹»ç ºñµî¹æ¼ºÀÇ Åë°èÀû Ư¼ºÀ» ¿¬±¸Çϰí ÀÖ´Ù. À̸¦ À§ÇØ, °üÃøÀ¸·Î ¾ò¾î³½ ¹è°æº¹»ç ÀÚ·á¿¡¼­ ¿ì¸®ÀºÇÏÀÇ °­ÇÑ ¹æÃâ¼±¿¡ ÀÇÇÑ ¿À¿°À» ÁÙÀÌ´Â È¿À²ÀûÀÎ ¾Ë°í¸®ÁòÀ» °³¹ßÇϰí ÀÖ´Ù. ¶ÇÇÑ, ¿ìÁÖ¹è°æº¹»ç ¿Âµµ¿äµ¿ ÀڷḦ »ç¿ëÇÏ¿© ¿ìÁÖ ¿ø½Ã ¿äµ¿ÀÇ Á¤±Ô¼º(Gaussianity)À» °ËÁ¤ÇÏ´Â ¿¬±¸µµ ¼öÇà ÁßÀÌ´Ù.